3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation

Abstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we in...

Full description

Bibliographic Details
Main Authors: Jianfeng Li, Payam Hashemi, Tianyi Liu, Ka My Dang, Michael G. K. Brunk, Xin Mu, Ali Shaygan Nia, Wesley D. Sacher, Xinliang Feng, Joyce K. S. Poon
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:Communications Materials
Online Access:https://doi.org/10.1038/s43246-024-00503-6
_version_ 1827264454367117312
author Jianfeng Li
Payam Hashemi
Tianyi Liu
Ka My Dang
Michael G. K. Brunk
Xin Mu
Ali Shaygan Nia
Wesley D. Sacher
Xinliang Feng
Joyce K. S. Poon
author_facet Jianfeng Li
Payam Hashemi
Tianyi Liu
Ka My Dang
Michael G. K. Brunk
Xin Mu
Ali Shaygan Nia
Wesley D. Sacher
Xinliang Feng
Joyce K. S. Poon
author_sort Jianfeng Li
collection DOAJ
description Abstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.
first_indexed 2025-03-22T03:46:19Z
format Article
id doaj.art-b4097a87e8d74be8889ce5b01945d7b4
institution Directory Open Access Journal
issn 2662-4443
language English
last_indexed 2025-03-22T03:46:19Z
publishDate 2024-04-01
publisher Nature Portfolio
record_format Article
series Communications Materials
spelling doaj.art-b4097a87e8d74be8889ce5b01945d7b42024-04-28T11:29:41ZengNature PortfolioCommunications Materials2662-44432024-04-015111210.1038/s43246-024-00503-63D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulationJianfeng Li0Payam Hashemi1Tianyi Liu2Ka My Dang3Michael G. K. Brunk4Xin Mu5Ali Shaygan Nia6Wesley D. Sacher7Xinliang Feng8Joyce K. S. Poon9Max Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsAbstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.https://doi.org/10.1038/s43246-024-00503-6
spellingShingle Jianfeng Li
Payam Hashemi
Tianyi Liu
Ka My Dang
Michael G. K. Brunk
Xin Mu
Ali Shaygan Nia
Wesley D. Sacher
Xinliang Feng
Joyce K. S. Poon
3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
Communications Materials
title 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
title_full 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
title_fullStr 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
title_full_unstemmed 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
title_short 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
title_sort 3d printed titanium carbide mxene coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
url https://doi.org/10.1038/s43246-024-00503-6
work_keys_str_mv AT jianfengli 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT payamhashemi 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT tianyiliu 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT kamydang 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT michaelgkbrunk 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT xinmu 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT alishaygannia 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT wesleydsacher 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT xinliangfeng 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation
AT joycekspoon 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation