3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation
Abstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we in...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-04-01
|
Series: | Communications Materials |
Online Access: | https://doi.org/10.1038/s43246-024-00503-6 |
_version_ | 1827264454367117312 |
---|---|
author | Jianfeng Li Payam Hashemi Tianyi Liu Ka My Dang Michael G. K. Brunk Xin Mu Ali Shaygan Nia Wesley D. Sacher Xinliang Feng Joyce K. S. Poon |
author_facet | Jianfeng Li Payam Hashemi Tianyi Liu Ka My Dang Michael G. K. Brunk Xin Mu Ali Shaygan Nia Wesley D. Sacher Xinliang Feng Joyce K. S. Poon |
author_sort | Jianfeng Li |
collection | DOAJ |
description | Abstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation. |
first_indexed | 2025-03-22T03:46:19Z |
format | Article |
id | doaj.art-b4097a87e8d74be8889ce5b01945d7b4 |
institution | Directory Open Access Journal |
issn | 2662-4443 |
language | English |
last_indexed | 2025-03-22T03:46:19Z |
publishDate | 2024-04-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Communications Materials |
spelling | doaj.art-b4097a87e8d74be8889ce5b01945d7b42024-04-28T11:29:41ZengNature PortfolioCommunications Materials2662-44432024-04-015111210.1038/s43246-024-00503-63D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulationJianfeng Li0Payam Hashemi1Tianyi Liu2Ka My Dang3Michael G. K. Brunk4Xin Mu5Ali Shaygan Nia6Wesley D. Sacher7Xinliang Feng8Joyce K. S. Poon9Max Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsMax Planck Institute of Microstructure PhysicsAbstract The exploration of neural circuitry is paramount for comprehending the computational mechanisms and physiology of the brain. Despite significant advances in materials and fabrication techniques, controlling neuronal connectivity and response in 3D remains a formidable challenge. Here, we introduce a method for engineering the growth of 3D neural circuits with the capability for optical stimulation. We fabricate bioactive interfaces by melt electrospinning writing (MEW) 3D polycaprolactone (PCL) scaffolds followed by coating with titanium carbide (Ti3C2Tx MXene). Beyond enhancing hydrophilicity, cell adhesion, and electrical conductivity, the Ti3C2Tx MXene coating enables optocapacitance-based neuronal stimulation, induced by localized temperature increases upon illumination. This approach offers a pathway for additive manufacturing of neural tissues endowed with optical control, facilitating functional tissue engineering and neural circuit computation.https://doi.org/10.1038/s43246-024-00503-6 |
spellingShingle | Jianfeng Li Payam Hashemi Tianyi Liu Ka My Dang Michael G. K. Brunk Xin Mu Ali Shaygan Nia Wesley D. Sacher Xinliang Feng Joyce K. S. Poon 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation Communications Materials |
title | 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
title_full | 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
title_fullStr | 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
title_full_unstemmed | 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
title_short | 3D printed titanium carbide MXene-coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
title_sort | 3d printed titanium carbide mxene coated polycaprolactone scaffolds for guided neuronal growth and photothermal stimulation |
url | https://doi.org/10.1038/s43246-024-00503-6 |
work_keys_str_mv | AT jianfengli 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT payamhashemi 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT tianyiliu 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT kamydang 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT michaelgkbrunk 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT xinmu 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT alishaygannia 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT wesleydsacher 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT xinliangfeng 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation AT joycekspoon 3dprintedtitaniumcarbidemxenecoatedpolycaprolactonescaffoldsforguidedneuronalgrowthandphotothermalstimulation |