Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot

<p>Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (...

Full description

Bibliographic Details
Main Authors: S. D. Forestieri, T. M. Helgestad, A. T. Lambe, L. Renbaum-Wolff, D. A. Lack, P. Massoli, E. S. Cross, M. K. Dubey, C. Mazzoleni, J. S. Olfert, A. J. Sedlacek III, A. Freedman, P. Davidovits, T. B. Onasch, C. D. Cappa
Format: Article
Language:English
Published: Copernicus Publications 2018-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/12141/2018/acp-18-12141-2018.pdf
_version_ 1830515181719912448
author S. D. Forestieri
S. D. Forestieri
T. M. Helgestad
T. M. Helgestad
A. T. Lambe
A. T. Lambe
L. Renbaum-Wolff
D. A. Lack
D. A. Lack
D. A. Lack
P. Massoli
E. S. Cross
E. S. Cross
M. K. Dubey
C. Mazzoleni
J. S. Olfert
A. J. Sedlacek III
A. Freedman
P. Davidovits
T. B. Onasch
T. B. Onasch
C. D. Cappa
author_facet S. D. Forestieri
S. D. Forestieri
T. M. Helgestad
T. M. Helgestad
A. T. Lambe
A. T. Lambe
L. Renbaum-Wolff
D. A. Lack
D. A. Lack
D. A. Lack
P. Massoli
E. S. Cross
E. S. Cross
M. K. Dubey
C. Mazzoleni
J. S. Olfert
A. J. Sedlacek III
A. Freedman
P. Davidovits
T. B. Onasch
T. B. Onasch
C. D. Cappa
author_sort S. D. Forestieri
collection DOAJ
description <p>Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters  &gt;  ∼ 160&thinsp;nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532&thinsp;nm for larger particles was 9.1±1.1&thinsp;m<sup>2</sup>&thinsp;g<sup>−1</sup>, about 17&thinsp;% higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with <i>x</i> &gt; 0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter <i>x</i> = <i>π</i><i>d</i><sub>p</sub>∕<i>λ</i>, where <i>d</i><sub>p</sub> is particle diameter and <i>λ</i> is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models.</p>
first_indexed 2024-12-22T03:18:49Z
format Article
id doaj.art-b415a9b944f6415fb53f62cbcd01243f
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-22T03:18:49Z
publishDate 2018-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-b415a9b944f6415fb53f62cbcd01243f2022-12-21T18:40:46ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-08-0118121411215910.5194/acp-18-12141-2018Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated sootS. D. Forestieri0S. D. Forestieri1T. M. Helgestad2T. M. Helgestad3A. T. Lambe4A. T. Lambe5L. Renbaum-Wolff6D. A. Lack7D. A. Lack8D. A. Lack9P. Massoli10E. S. Cross11E. S. Cross12M. K. Dubey13C. Mazzoleni14J. S. Olfert15A. J. Sedlacek III16A. Freedman17P. Davidovits18T. B. Onasch19T. B. Onasch20C. D. Cappa21Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USAnow at: California Air Resources Board, Sacramento, CA 95814, USADepartment of Civil and Environmental Engineering, University of California, Davis, CA 95616, USAnow at: California Air Resources Board, Sacramento, CA 95814, USAAerodyne Research Inc., Billerica, MA 01821, USAChemistry Department, Boston College, Boston, MA 02467, USAAerodyne Research Inc., Billerica, MA 01821, USANOAA Earth System Research Laboratory, Boulder, CO 80305, USACooperative Institute for Research of the Environmental Sciences, University of Colorado, Boulder, CO 80305, USAnow at: Transport Emissions, Air Quality and Climate Consulting, Brisbane, AustraliaAerodyne Research Inc., Billerica, MA 01821, USADepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USAnow at: Aerodyne Research Inc., Billerica, MA 01821, USALos Alamos National Laboratory, Los Alamos, NM 87545, USADepartment of Physics and Atmospheric Sciences Program, Michigan Technological University, Houghton, MI 49931, USADepartment of Mechanical Engineering, University of Alberta, Edmonton, Alberta, CanadaBiological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USAAerodyne Research Inc., Billerica, MA 01821, USAChemistry Department, Boston College, Boston, MA 02467, USAAerodyne Research Inc., Billerica, MA 01821, USAChemistry Department, Boston College, Boston, MA 02467, USADepartment of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA<p>Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters  &gt;  ∼ 160&thinsp;nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532&thinsp;nm for larger particles was 9.1±1.1&thinsp;m<sup>2</sup>&thinsp;g<sup>−1</sup>, about 17&thinsp;% higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with <i>x</i> &gt; 0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter <i>x</i> = <i>π</i><i>d</i><sub>p</sub>∕<i>λ</i>, where <i>d</i><sub>p</sub> is particle diameter and <i>λ</i> is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models.</p>https://www.atmos-chem-phys.net/18/12141/2018/acp-18-12141-2018.pdf
spellingShingle S. D. Forestieri
S. D. Forestieri
T. M. Helgestad
T. M. Helgestad
A. T. Lambe
A. T. Lambe
L. Renbaum-Wolff
D. A. Lack
D. A. Lack
D. A. Lack
P. Massoli
E. S. Cross
E. S. Cross
M. K. Dubey
C. Mazzoleni
J. S. Olfert
A. J. Sedlacek III
A. Freedman
P. Davidovits
T. B. Onasch
T. B. Onasch
C. D. Cappa
Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
Atmospheric Chemistry and Physics
title Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
title_full Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
title_fullStr Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
title_full_unstemmed Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
title_short Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot
title_sort measurement and modeling of the multiwavelength optical properties of uncoated flame generated soot
url https://www.atmos-chem-phys.net/18/12141/2018/acp-18-12141-2018.pdf
work_keys_str_mv AT sdforestieri measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT sdforestieri measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT tmhelgestad measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT tmhelgestad measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT atlambe measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT atlambe measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT lrenbaumwolff measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT dalack measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT dalack measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT dalack measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT pmassoli measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT escross measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT escross measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT mkdubey measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT cmazzoleni measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT jsolfert measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT ajsedlacekiii measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT afreedman measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT pdavidovits measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT tbonasch measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT tbonasch measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot
AT cdcappa measurementandmodelingofthemultiwavelengthopticalpropertiesofuncoatedflamegeneratedsoot