AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection

Integrating artificial intelligence with SARS-CoV-2 diagnostics can help in the timely execution of pandemic control and monitoring plans. To improve the efficiency of the diagnostic process, this study aims to classify fluorescent images via traditional machine learning and deep learning-based tran...

Full description

Bibliographic Details
Main Authors: Likun Zhang, Zhengyang Lei, Chufan Xiao, Zhicheng Du, Chenyao Jiang, Xi Yuan, Qiuyue Hu, Shiyao Zhai, Lulu Xu, Changyue Liu, Xiaoyun Zhong, Haifei Guan, Muhammad Hassan, Ijaz Gul, Vijay Pandey, Xinhui Xing, Can Yang Zhang, Qian He, Peiwu Qin
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-11-01
Series:Frontiers in Sensors
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fsens.2022.1015223/full
_version_ 1797227510645129216
author Likun Zhang
Likun Zhang
Zhengyang Lei
Zhengyang Lei
Chufan Xiao
Chufan Xiao
Zhicheng Du
Zhicheng Du
Chenyao Jiang
Chenyao Jiang
Xi Yuan
Xi Yuan
Qiuyue Hu
Qiuyue Hu
Shiyao Zhai
Shiyao Zhai
Lulu Xu
Lulu Xu
Changyue Liu
Changyue Liu
Xiaoyun Zhong
Xiaoyun Zhong
Haifei Guan
Haifei Guan
Muhammad Hassan
Muhammad Hassan
Ijaz Gul
Ijaz Gul
Vijay Pandey
Vijay Pandey
Xinhui Xing
Xinhui Xing
Can Yang Zhang
Can Yang Zhang
Qian He
Qian He
Peiwu Qin
Peiwu Qin
author_facet Likun Zhang
Likun Zhang
Zhengyang Lei
Zhengyang Lei
Chufan Xiao
Chufan Xiao
Zhicheng Du
Zhicheng Du
Chenyao Jiang
Chenyao Jiang
Xi Yuan
Xi Yuan
Qiuyue Hu
Qiuyue Hu
Shiyao Zhai
Shiyao Zhai
Lulu Xu
Lulu Xu
Changyue Liu
Changyue Liu
Xiaoyun Zhong
Xiaoyun Zhong
Haifei Guan
Haifei Guan
Muhammad Hassan
Muhammad Hassan
Ijaz Gul
Ijaz Gul
Vijay Pandey
Vijay Pandey
Xinhui Xing
Xinhui Xing
Can Yang Zhang
Can Yang Zhang
Qian He
Qian He
Peiwu Qin
Peiwu Qin
author_sort Likun Zhang
collection DOAJ
description Integrating artificial intelligence with SARS-CoV-2 diagnostics can help in the timely execution of pandemic control and monitoring plans. To improve the efficiency of the diagnostic process, this study aims to classify fluorescent images via traditional machine learning and deep learning-based transfer learning. A previous study reported a CRISPR-Cas13a system combined with total internal reflection fluorescence microscopy (TIRFM) to detect the existence and concentrations of SARS-CoV-2 by fluorescent images. However, the lack of professional software and excessive manual labor hinder the practicability of the system. Here, we construct a fluorescent image dataset and develop an AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for the rapid diagnosis of SARS-CoV-2. Our study proposes Fluorescent Images Classification Transfer learning based on DenseNet-121 (FICTransDense), an approach that uses TIRF images (before and after sample introduction, respectively) for preprocessing, including outlier exclusion and setting and division preprocessing (i.e., SDP). Classification results indicate that the FICTransDense and Decision Tree algorithms outperform other approaches on the SDP dataset. Most of the algorithms benefit from the proposed SDP technique in terms of Accuracy, Recall, F1 Score, and Precision. The use of AI-boosted CRISPR-Cas13a and TIRFM systems facilitates rapid monitoring and diagnosis of SARS-CoV-2.
first_indexed 2024-04-24T14:41:57Z
format Article
id doaj.art-b416a8a1b78b41fc9ef178ae88b6db2f
institution Directory Open Access Journal
issn 2673-5067
language English
last_indexed 2024-04-24T14:41:57Z
publishDate 2022-11-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Sensors
spelling doaj.art-b416a8a1b78b41fc9ef178ae88b6db2f2024-04-02T21:29:39ZengFrontiers Media S.A.Frontiers in Sensors2673-50672022-11-01310.3389/fsens.2022.10152231015223AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detectionLikun Zhang0Likun Zhang1Zhengyang Lei2Zhengyang Lei3Chufan Xiao4Chufan Xiao5Zhicheng Du6Zhicheng Du7Chenyao Jiang8Chenyao Jiang9Xi Yuan10Xi Yuan11Qiuyue Hu12Qiuyue Hu13Shiyao Zhai14Shiyao Zhai15Lulu Xu16Lulu Xu17Changyue Liu18Changyue Liu19Xiaoyun Zhong20Xiaoyun Zhong21Haifei Guan22Haifei Guan23Muhammad Hassan24Muhammad Hassan25Ijaz Gul26Ijaz Gul27Vijay Pandey28Vijay Pandey29Xinhui Xing30Xinhui Xing31Can Yang Zhang32Can Yang Zhang33Qian He34Qian He35Peiwu Qin36Peiwu Qin37Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaCenter of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, ChinaInstitute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong, ChinaIntegrating artificial intelligence with SARS-CoV-2 diagnostics can help in the timely execution of pandemic control and monitoring plans. To improve the efficiency of the diagnostic process, this study aims to classify fluorescent images via traditional machine learning and deep learning-based transfer learning. A previous study reported a CRISPR-Cas13a system combined with total internal reflection fluorescence microscopy (TIRFM) to detect the existence and concentrations of SARS-CoV-2 by fluorescent images. However, the lack of professional software and excessive manual labor hinder the practicability of the system. Here, we construct a fluorescent image dataset and develop an AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for the rapid diagnosis of SARS-CoV-2. Our study proposes Fluorescent Images Classification Transfer learning based on DenseNet-121 (FICTransDense), an approach that uses TIRF images (before and after sample introduction, respectively) for preprocessing, including outlier exclusion and setting and division preprocessing (i.e., SDP). Classification results indicate that the FICTransDense and Decision Tree algorithms outperform other approaches on the SDP dataset. Most of the algorithms benefit from the proposed SDP technique in terms of Accuracy, Recall, F1 Score, and Precision. The use of AI-boosted CRISPR-Cas13a and TIRFM systems facilitates rapid monitoring and diagnosis of SARS-CoV-2.https://www.frontiersin.org/articles/10.3389/fsens.2022.1015223/fullCRISPR-Cas13aTIRFMmachine learningtransfer learningDensenet-121SARS-CoV-2
spellingShingle Likun Zhang
Likun Zhang
Zhengyang Lei
Zhengyang Lei
Chufan Xiao
Chufan Xiao
Zhicheng Du
Zhicheng Du
Chenyao Jiang
Chenyao Jiang
Xi Yuan
Xi Yuan
Qiuyue Hu
Qiuyue Hu
Shiyao Zhai
Shiyao Zhai
Lulu Xu
Lulu Xu
Changyue Liu
Changyue Liu
Xiaoyun Zhong
Xiaoyun Zhong
Haifei Guan
Haifei Guan
Muhammad Hassan
Muhammad Hassan
Ijaz Gul
Ijaz Gul
Vijay Pandey
Vijay Pandey
Xinhui Xing
Xinhui Xing
Can Yang Zhang
Can Yang Zhang
Qian He
Qian He
Peiwu Qin
Peiwu Qin
AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
Frontiers in Sensors
CRISPR-Cas13a
TIRFM
machine learning
transfer learning
Densenet-121
SARS-CoV-2
title AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
title_full AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
title_fullStr AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
title_full_unstemmed AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
title_short AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection
title_sort ai boosted crispr cas13a and total internal reflection fluorescence microscopy system for sars cov 2 detection
topic CRISPR-Cas13a
TIRFM
machine learning
transfer learning
Densenet-121
SARS-CoV-2
url https://www.frontiersin.org/articles/10.3389/fsens.2022.1015223/full
work_keys_str_mv AT likunzhang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT likunzhang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT zhengyanglei aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT zhengyanglei aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT chufanxiao aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT chufanxiao aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT zhichengdu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT zhichengdu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT chenyaojiang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT chenyaojiang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xiyuan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xiyuan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT qiuyuehu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT qiuyuehu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT shiyaozhai aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT shiyaozhai aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT luluxu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT luluxu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT changyueliu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT changyueliu aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xiaoyunzhong aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xiaoyunzhong aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT haifeiguan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT haifeiguan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT muhammadhassan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT muhammadhassan aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT ijazgul aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT ijazgul aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT vijaypandey aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT vijaypandey aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xinhuixing aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT xinhuixing aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT canyangzhang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT canyangzhang aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT qianhe aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT qianhe aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT peiwuqin aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection
AT peiwuqin aiboostedcrisprcas13aandtotalinternalreflectionfluorescencemicroscopysystemforsarscov2detection