Unicyclic graphs with extremal exponential Randić index

Recently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a...

Full description

Bibliographic Details
Main Authors: Qian Lin, Yan Zhu
Format: Article
Language:English
Published: AIMS Press 2021-06-01
Series:Mathematical Modelling and Control
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mmc.2021015?viewType=HTML
_version_ 1828821197691813888
author Qian Lin
Yan Zhu
author_facet Qian Lin
Yan Zhu
author_sort Qian Lin
collection DOAJ
description Recently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a vertex $ u $ in $ G $. In this paper, we give sharp lower and upper bounds on the exponential Randić index of unicyclic graphs.
first_indexed 2024-12-12T12:49:43Z
format Article
id doaj.art-b41963d26a4e487899dfe8150291509b
institution Directory Open Access Journal
issn 2767-8946
language English
last_indexed 2024-12-12T12:49:43Z
publishDate 2021-06-01
publisher AIMS Press
record_format Article
series Mathematical Modelling and Control
spelling doaj.art-b41963d26a4e487899dfe8150291509b2022-12-22T00:24:02ZengAIMS PressMathematical Modelling and Control2767-89462021-06-011316417110.3934/mmc.2021015Unicyclic graphs with extremal exponential Randić indexQian Lin0Yan Zhu 1School of Mathematics, East China University of Science and Technology, Shanghai, ChinaSchool of Mathematics, East China University of Science and Technology, Shanghai, ChinaRecently the exponential Randić index $ {{\rm e}^{\chi}} $ was introduced. The exponential Randić index of a graph $ G $ is defined as the sum of the weights $ {{\rm e}^{{\frac {1}{\sqrt {d \left(u \right) d \left(v \right) }}}}} $ of all edges $ uv $ of $ G $, where $ d(u) $ denotes the degree of a vertex $ u $ in $ G $. In this paper, we give sharp lower and upper bounds on the exponential Randić index of unicyclic graphs.https://www.aimspress.com/article/doi/10.3934/mmc.2021015?viewType=HTMLexponential randić indexunicyclic graphextremal value
spellingShingle Qian Lin
Yan Zhu
Unicyclic graphs with extremal exponential Randić index
Mathematical Modelling and Control
exponential randić index
unicyclic graph
extremal value
title Unicyclic graphs with extremal exponential Randić index
title_full Unicyclic graphs with extremal exponential Randić index
title_fullStr Unicyclic graphs with extremal exponential Randić index
title_full_unstemmed Unicyclic graphs with extremal exponential Randić index
title_short Unicyclic graphs with extremal exponential Randić index
title_sort unicyclic graphs with extremal exponential randic index
topic exponential randić index
unicyclic graph
extremal value
url https://www.aimspress.com/article/doi/10.3934/mmc.2021015?viewType=HTML
work_keys_str_mv AT qianlin unicyclicgraphswithextremalexponentialrandicindex
AT yanzhu unicyclicgraphswithextremalexponentialrandicindex