Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting

Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn...

Full description

Bibliographic Details
Main Authors: Yin-Pai Lin, Dmitry Bocharov, Inta Isakoviča, Vladimir Pankratov, Aleksandr A. Popov, Anatoli I. Popov, Sergei Piskunov
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Electronic Materials
Subjects:
Online Access:https://www.mdpi.com/2673-3978/4/1/4
_version_ 1797612285950164992
author Yin-Pai Lin
Dmitry Bocharov
Inta Isakoviča
Vladimir Pankratov
Aleksandr A. Popov
Anatoli I. Popov
Sergei Piskunov
author_facet Yin-Pai Lin
Dmitry Bocharov
Inta Isakoviča
Vladimir Pankratov
Aleksandr A. Popov
Anatoli I. Popov
Sergei Piskunov
author_sort Yin-Pai Lin
collection DOAJ
description Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> surface as the excitation energy is around the band gap energy of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> for transforming the water into hydroxyl and hydrogen by photoinduced driving force.
first_indexed 2024-03-11T06:39:09Z
format Article
id doaj.art-b41f7698222a41be803ec67b7f076ec8
institution Directory Open Access Journal
issn 2673-3978
language English
last_indexed 2024-03-11T06:39:09Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Electronic Materials
spelling doaj.art-b41f7698222a41be803ec67b7f076ec82023-11-17T10:43:04ZengMDPI AGElectronic Materials2673-39782023-03-0141334810.3390/electronicmat4010004Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water SplittingYin-Pai Lin0Dmitry Bocharov1Inta Isakoviča2Vladimir Pankratov3Aleksandr A. Popov4Anatoli I. Popov5Sergei Piskunov6Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaChloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> surface as the excitation energy is around the band gap energy of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> for transforming the water into hydroxyl and hydrogen by photoinduced driving force.https://www.mdpi.com/2673-3978/4/1/4TiO<sub>2</sub>photocatalystseawatertime-dependent density functional theoryEhrenfest dynamics
spellingShingle Yin-Pai Lin
Dmitry Bocharov
Inta Isakoviča
Vladimir Pankratov
Aleksandr A. Popov
Anatoli I. Popov
Sergei Piskunov
Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
Electronic Materials
TiO<sub>2</sub>
photocatalyst
seawater
time-dependent density functional theory
Ehrenfest dynamics
title Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
title_full Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
title_fullStr Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
title_full_unstemmed Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
title_short Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
title_sort chlorine adsorption on tio sub 2 sub 110 water interface nonadiabatic molecular dynamics simulations for photocatalytic water splitting
topic TiO<sub>2</sub>
photocatalyst
seawater
time-dependent density functional theory
Ehrenfest dynamics
url https://www.mdpi.com/2673-3978/4/1/4
work_keys_str_mv AT yinpailin chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT dmitrybocharov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT intaisakovica chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT vladimirpankratov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT aleksandrapopov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT anatoliipopov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting
AT sergeipiskunov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting