Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting
Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Electronic Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-3978/4/1/4 |
_version_ | 1797612285950164992 |
---|---|
author | Yin-Pai Lin Dmitry Bocharov Inta Isakoviča Vladimir Pankratov Aleksandr A. Popov Anatoli I. Popov Sergei Piskunov |
author_facet | Yin-Pai Lin Dmitry Bocharov Inta Isakoviča Vladimir Pankratov Aleksandr A. Popov Anatoli I. Popov Sergei Piskunov |
author_sort | Yin-Pai Lin |
collection | DOAJ |
description | Chloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> surface as the excitation energy is around the band gap energy of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> for transforming the water into hydroxyl and hydrogen by photoinduced driving force. |
first_indexed | 2024-03-11T06:39:09Z |
format | Article |
id | doaj.art-b41f7698222a41be803ec67b7f076ec8 |
institution | Directory Open Access Journal |
issn | 2673-3978 |
language | English |
last_indexed | 2024-03-11T06:39:09Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Electronic Materials |
spelling | doaj.art-b41f7698222a41be803ec67b7f076ec82023-11-17T10:43:04ZengMDPI AGElectronic Materials2673-39782023-03-0141334810.3390/electronicmat4010004Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water SplittingYin-Pai Lin0Dmitry Bocharov1Inta Isakoviča2Vladimir Pankratov3Aleksandr A. Popov4Anatoli I. Popov5Sergei Piskunov6Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaInstitute of Solid State Physics, University of Latvia, 8 Kengaraga str., LV-1063 Riga, LatviaChloride is one of the most abundant ions in sea water, which is more available than fresh water. Due to lack of H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O adsorbate states near the valence band maximum (VBM) edge, the difficulty of water dissociation incidents has been reported on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> surface as the excitation energy is around the band gap energy of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>. It is interesting whether the extra chloride can be a benefit to the water dissociation or not. In this study, the models of chlorine adatoms placed on the rutile TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> (110)/water interface are constructed using ab initio methods. The time-dependent spatial charges, bond-lengths of water molecules, and Hirshfeld charges are calculated by real-time time-dependent density functional theory and the Ehrenfest dynamics theory for investigating the excited state nonadiabatic dynamics of water dissociation. This study presents two photoinduced water-splitting pathways related to chlorine and analyzes the photogenerated hole along the reactions. The first step of water dissociation relies on the localized competition of oxygen charges between the dissociated water and the bridge site of TiO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> for transforming the water into hydroxyl and hydrogen by photoinduced driving force.https://www.mdpi.com/2673-3978/4/1/4TiO<sub>2</sub>photocatalystseawatertime-dependent density functional theoryEhrenfest dynamics |
spellingShingle | Yin-Pai Lin Dmitry Bocharov Inta Isakoviča Vladimir Pankratov Aleksandr A. Popov Anatoli I. Popov Sergei Piskunov Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting Electronic Materials TiO<sub>2</sub> photocatalyst seawater time-dependent density functional theory Ehrenfest dynamics |
title | Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting |
title_full | Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting |
title_fullStr | Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting |
title_full_unstemmed | Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting |
title_short | Chlorine Adsorption on TiO<sub>2</sub>(110)/Water Interface: Nonadiabatic Molecular Dynamics Simulations for Photocatalytic Water Splitting |
title_sort | chlorine adsorption on tio sub 2 sub 110 water interface nonadiabatic molecular dynamics simulations for photocatalytic water splitting |
topic | TiO<sub>2</sub> photocatalyst seawater time-dependent density functional theory Ehrenfest dynamics |
url | https://www.mdpi.com/2673-3978/4/1/4 |
work_keys_str_mv | AT yinpailin chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT dmitrybocharov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT intaisakovica chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT vladimirpankratov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT aleksandrapopov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT anatoliipopov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting AT sergeipiskunov chlorineadsorptionontiosub2sub110waterinterfacenonadiabaticmoleculardynamicssimulationsforphotocatalyticwatersplitting |