<i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds

The subject of the present paper is the investigation of a new type of solitons, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ri...

Full description

Bibliographic Details
Main Authors: Arpan Sardar, Mohammad Nazrul Islam Khan, Uday Chand De
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/24/3200
_version_ 1797502670823489536
author Arpan Sardar
Mohammad Nazrul Islam Khan
Uday Chand De
author_facet Arpan Sardar
Mohammad Nazrul Islam Khan
Uday Chand De
author_sort Arpan Sardar
collection DOAJ
description The subject of the present paper is the investigation of a new type of solitons, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-almost co-Kähler manifold (briefly, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>), which generalizes the notion of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton introduced by Cho and Kimura. First, the expression of the ∗-Ricci tensor on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula> is obtained. Additionally, we classify the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>s. Next, we investigate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>s admitting gradient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons. Finally, we construct two examples to illustrate our results.
first_indexed 2024-03-10T03:38:25Z
format Article
id doaj.art-b422604b601e42cf94c47c63e5e3da46
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:38:25Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b422604b601e42cf94c47c63e5e3da462023-11-23T09:25:39ZengMDPI AGMathematics2227-73902021-12-01924320010.3390/math9243200<i>η</i>-∗-Ricci Solitons and Almost co-Kähler ManifoldsArpan Sardar0Mohammad Nazrul Islam Khan1Uday Chand De2Department of Mathematics, University of Kalyani, Kalyani 741235, IndiaDepartment of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, IndiaThe subject of the present paper is the investigation of a new type of solitons, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-almost co-Kähler manifold (briefly, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>), which generalizes the notion of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-Ricci soliton introduced by Cho and Kimura. First, the expression of the ∗-Ricci tensor on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula> is obtained. Additionally, we classify the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>s. Next, we investigate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mi>c</mi><mi>k</mi><mi>m</mi></mrow></semantics></math></inline-formula>s admitting gradient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>-∗-Ricci solitons. Finally, we construct two examples to illustrate our results.https://www.mdpi.com/2227-7390/9/24/3200∗-Ricci tensor<i>η</i>-∗-Ricci solitonsgradient <i>η</i>-∗-Ricci solitonsalmost co-Kähler manifolds(<i>k</i>,<i>μ</i>)-almost co-Kähler manifolds
spellingShingle Arpan Sardar
Mohammad Nazrul Islam Khan
Uday Chand De
<i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
Mathematics
∗-Ricci tensor
<i>η</i>-∗-Ricci solitons
gradient <i>η</i>-∗-Ricci solitons
almost co-Kähler manifolds
(<i>k</i>,<i>μ</i>)-almost co-Kähler manifolds
title <i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
title_full <i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
title_fullStr <i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
title_full_unstemmed <i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
title_short <i>η</i>-∗-Ricci Solitons and Almost co-Kähler Manifolds
title_sort i η i ∗ ricci solitons and almost co kahler manifolds
topic ∗-Ricci tensor
<i>η</i>-∗-Ricci solitons
gradient <i>η</i>-∗-Ricci solitons
almost co-Kähler manifolds
(<i>k</i>,<i>μ</i>)-almost co-Kähler manifolds
url https://www.mdpi.com/2227-7390/9/24/3200
work_keys_str_mv AT arpansardar iēiriccisolitonsandalmostcokahlermanifolds
AT mohammadnazrulislamkhan iēiriccisolitonsandalmostcokahlermanifolds
AT udaychandde iēiriccisolitonsandalmostcokahlermanifolds