Summary: | The temporal evolution of pandemics described by the susceptible-infectious-recovered (SIR)-compartment model is sensitively determined by the time dependence of the infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and recovery (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> rates regulating the transitions from the susceptible to the infected and from the infected to the recovered compartment, respectively. Here, approximated SIR solutions for different time dependencies of the infection and recovery rates are derived which are based on the adiabatic approximation assuming time-dependent ratios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, varying slowly in comparison with the typical time characteristics of the pandemic wave. For such slow variations, the available analytical approximations from the KSSIR-model, developed by us and valid for a stationary value of the ratio <i>k</i>, are used to insert a posteriori the adopted time-dependent ratio of the two rates. Instead of investigating endless different combinations of the time dependencies of the two rates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, a suitably parameterized reduced time, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, dependence of the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is adopted. Together with the definition of the reduced time, this parameterized ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> allows us to cover a great variety of different time dependencies of the infection and recovery rates. The agreement between the solutions from the adiabatic approximation in its four different studied variants and the exact numerical solutions of the SIR-equations is tolerable providing confidence in the accuracy of the proposed adiabatic approximation.
|