SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates

The temporal evolution of pandemics described by the susceptible-infectious-recovered (SIR)-compartment model is sensitively determined by the time dependence of the infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><seman...

Full description

Bibliographic Details
Main Authors: Martin Kröger, Reinhard Schlickeiser
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/4/2/34
_version_ 1797483146532356096
author Martin Kröger
Reinhard Schlickeiser
author_facet Martin Kröger
Reinhard Schlickeiser
author_sort Martin Kröger
collection DOAJ
description The temporal evolution of pandemics described by the susceptible-infectious-recovered (SIR)-compartment model is sensitively determined by the time dependence of the infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and recovery (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> rates regulating the transitions from the susceptible to the infected and from the infected to the recovered compartment, respectively. Here, approximated SIR solutions for different time dependencies of the infection and recovery rates are derived which are based on the adiabatic approximation assuming time-dependent ratios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, varying slowly in comparison with the typical time characteristics of the pandemic wave. For such slow variations, the available analytical approximations from the KSSIR-model, developed by us and valid for a stationary value of the ratio <i>k</i>, are used to insert a posteriori the adopted time-dependent ratio of the two rates. Instead of investigating endless different combinations of the time dependencies of the two rates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, a suitably parameterized reduced time, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, dependence of the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is adopted. Together with the definition of the reduced time, this parameterized ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> allows us to cover a great variety of different time dependencies of the infection and recovery rates. The agreement between the solutions from the adiabatic approximation in its four different studied variants and the exact numerical solutions of the SIR-equations is tolerable providing confidence in the accuracy of the proposed adiabatic approximation.
first_indexed 2024-03-09T22:43:47Z
format Article
id doaj.art-b4405670bbbd4aaba125a7cb963021a4
institution Directory Open Access Journal
issn 2624-8174
language English
last_indexed 2024-03-09T22:43:47Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Physics
spelling doaj.art-b4405670bbbd4aaba125a7cb963021a42023-11-23T18:33:49ZengMDPI AGPhysics2624-81742022-05-014250452410.3390/physics4020034SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection RatesMartin Kröger0Reinhard Schlickeiser1Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, SwitzerlandTheoretische Physik, Weltraum- und Astrophysik, Lehrstuhl IV, Ruhr-Universität Bochum, D-44780 Bochum, GermanyThe temporal evolution of pandemics described by the susceptible-infectious-recovered (SIR)-compartment model is sensitively determined by the time dependence of the infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and recovery (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula> rates regulating the transitions from the susceptible to the infected and from the infected to the recovered compartment, respectively. Here, approximated SIR solutions for different time dependencies of the infection and recovery rates are derived which are based on the adiabatic approximation assuming time-dependent ratios, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, varying slowly in comparison with the typical time characteristics of the pandemic wave. For such slow variations, the available analytical approximations from the KSSIR-model, developed by us and valid for a stationary value of the ratio <i>k</i>, are used to insert a posteriori the adopted time-dependent ratio of the two rates. Instead of investigating endless different combinations of the time dependencies of the two rates <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>, a suitably parameterized reduced time, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, dependence of the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is adopted. Together with the definition of the reduced time, this parameterized ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></semantics></math></inline-formula> allows us to cover a great variety of different time dependencies of the infection and recovery rates. The agreement between the solutions from the adiabatic approximation in its four different studied variants and the exact numerical solutions of the SIR-equations is tolerable providing confidence in the accuracy of the proposed adiabatic approximation.https://www.mdpi.com/2624-8174/4/2/34epidemiologystatistical analysistime-scale separationdifferential equationsadiabatic approximation
spellingShingle Martin Kröger
Reinhard Schlickeiser
SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
Physics
epidemiology
statistical analysis
time-scale separation
differential equations
adiabatic approximation
title SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
title_full SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
title_fullStr SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
title_full_unstemmed SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
title_short SIR-Solution for Slowly Time-Dependent Ratio between Recovery and Infection Rates
title_sort sir solution for slowly time dependent ratio between recovery and infection rates
topic epidemiology
statistical analysis
time-scale separation
differential equations
adiabatic approximation
url https://www.mdpi.com/2624-8174/4/2/34
work_keys_str_mv AT martinkroger sirsolutionforslowlytimedependentratiobetweenrecoveryandinfectionrates
AT reinhardschlickeiser sirsolutionforslowlytimedependentratiobetweenrecoveryandinfectionrates