pH-Responsive Intra- and Inter-Molecularly Micelle Formation of Anionic Diblock Copolymer in Water

Poly(sodium2-(acrylamido)-2-methylpropanesulfonate)-block-poly(sodium11-(acrylamido)undecanoate) (PAMPS–PAaU) was synthesized via reversible addition-fragmentation chain transfer (RAFT)-controlled radical polymerization. The “living” polymerization of PAaU was evidenced by the fact that the molecula...

Full description

Bibliographic Details
Main Authors: Masanobu Mizusaki, Yoshihiko Shimada, Yotaro Morishima, Shin-ichi Yusa
Format: Article
Language:English
Published: MDPI AG 2016-02-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/8/2/56
Description
Summary:Poly(sodium2-(acrylamido)-2-methylpropanesulfonate)-block-poly(sodium11-(acrylamido)undecanoate) (PAMPS–PAaU) was synthesized via reversible addition-fragmentation chain transfer (RAFT)-controlled radical polymerization. The “living” polymerization of PAaU was evidenced by the fact that the molecular weight distribution was narrow (Mw/Mn = 1.23). The pH-induced association behavior of PAMPS–PAaU in 0.1 M NaCl aqueous solutions as a function of solution pH was investigated by 1H NMR spin-spin relaxation time, dynamic light scattering (DLS), static light scattering (SLS), and fluorescence probe techniques. These results indicated that PAMPS–PAaU formed polymer micelles in 0.1 M NaCl aqueous solutions at pH < 9. At pH = 8–9, the polymer formed the micelles intramolecularly due to hydrophobic self-association of the PAaU block within the single polymer chain. On the other hand, at pH < 8, micellization occurred intermolecularly to form polymer micelles comprising hydrophobic PAaU cores and hydrophilic PAMPS shells.
ISSN:2073-4360