In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2020-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-020-79266-2 |
_version_ | 1818682692679499776 |
---|---|
author | Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe |
author_facet | Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe |
author_sort | Tammy Chang |
collection | DOAJ |
description | Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system. |
first_indexed | 2024-12-17T10:22:53Z |
format | Article |
id | doaj.art-b44edb11975245e2a30ea41c1cf4e142 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-17T10:22:53Z |
publishDate | 2020-12-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-b44edb11975245e2a30ea41c1cf4e1422022-12-21T21:52:44ZengNature PortfolioScientific Reports2045-23222020-12-011011910.1038/s41598-020-79266-2In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnosticTammy Chang0Saptarshi Mukherjee1Nicholas N. Watkins2David M. Stobbe3Owen Mays4Emer V. Baluyot5Andrew J. Pascall6Joseph W. Tringe7Lawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryAbstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.https://doi.org/10.1038/s41598-020-79266-2 |
spellingShingle | Tammy Chang Saptarshi Mukherjee Nicholas N. Watkins David M. Stobbe Owen Mays Emer V. Baluyot Andrew J. Pascall Joseph W. Tringe In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic Scientific Reports |
title | In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_full | In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_fullStr | In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_full_unstemmed | In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_short | In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic |
title_sort | in situ monitoring for liquid metal jetting using a millimeter wave impedance diagnostic |
url | https://doi.org/10.1038/s41598-020-79266-2 |
work_keys_str_mv | AT tammychang insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT saptarshimukherjee insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT nicholasnwatkins insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT davidmstobbe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT owenmays insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT emervbaluyot insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT andrewjpascall insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic AT josephwtringe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic |