In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic

Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for...

Full description

Bibliographic Details
Main Authors: Tammy Chang, Saptarshi Mukherjee, Nicholas N. Watkins, David M. Stobbe, Owen Mays, Emer V. Baluyot, Andrew J. Pascall, Joseph W. Tringe
Format: Article
Language:English
Published: Nature Portfolio 2020-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-020-79266-2
_version_ 1818682692679499776
author Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
author_facet Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
author_sort Tammy Chang
collection DOAJ
description Abstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.
first_indexed 2024-12-17T10:22:53Z
format Article
id doaj.art-b44edb11975245e2a30ea41c1cf4e142
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-12-17T10:22:53Z
publishDate 2020-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-b44edb11975245e2a30ea41c1cf4e1422022-12-21T21:52:44ZengNature PortfolioScientific Reports2045-23222020-12-011011910.1038/s41598-020-79266-2In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnosticTammy Chang0Saptarshi Mukherjee1Nicholas N. Watkins2David M. Stobbe3Owen Mays4Emer V. Baluyot5Andrew J. Pascall6Joseph W. Tringe7Lawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryLawrence Livermore National LaboratoryAbstract This article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.https://doi.org/10.1038/s41598-020-79266-2
spellingShingle Tammy Chang
Saptarshi Mukherjee
Nicholas N. Watkins
David M. Stobbe
Owen Mays
Emer V. Baluyot
Andrew J. Pascall
Joseph W. Tringe
In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
Scientific Reports
title In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_full In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_fullStr In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_full_unstemmed In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_short In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic
title_sort in situ monitoring for liquid metal jetting using a millimeter wave impedance diagnostic
url https://doi.org/10.1038/s41598-020-79266-2
work_keys_str_mv AT tammychang insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT saptarshimukherjee insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT nicholasnwatkins insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT davidmstobbe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT owenmays insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT emervbaluyot insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT andrewjpascall insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic
AT josephwtringe insitumonitoringforliquidmetaljettingusingamillimeterwaveimpedancediagnostic