Dynamics of Structures with Distributed Gyroscopes: Modal Discretization Versus Spatial Discretization

In this study, two discretization numerical methods, modal discretization and spatial discretization methods, were proposed and compared when applied to the gyroscopic structures. If the distributed gyroscopes are attached, the general numerical methods should be modified to derive the natural frequ...

Full description

Bibliographic Details
Main Authors: Xiao-Dong Yang, Bao-Yin Xie, Wei Zhang, Quan Hu
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/1/160
Description
Summary:In this study, two discretization numerical methods, modal discretization and spatial discretization methods, were proposed and compared when applied to the gyroscopic structures. If the distributed gyroscopes are attached, the general numerical methods should be modified to derive the natural frequencies and complex modes due to the gyroscopic effect. The modal discretization method can be used for cases where the modal functions of the base structure can be expressed in explicit forms, while the spatial discretization method can be used in irregular structures without modal functions, but cost more computational time. The convergence and efficiency of both modal and spatial discretization techniques are illustrated by an example of a beam with uniformly distributed gyroscopes. The investigation of this paper may provide useful techniques to study structures with distributed inertial components.
ISSN:2076-3417