Optimization of Source-Wire-Gas Systems for Efficient Robot Welding
GMAW (Gas-Metal-Arc-Welding) as the last of main technologies, yet based for a most part on manual (semiautomatic) work, is gradually automated. But traditional advances of weld design, technology and quality assurance is not essentially changing. The result is non-efficient welding (overwelding). E...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2010-07-01
|
Series: | International Journal for Simulation and Multidisciplinary Design Optimization |
Subjects: | |
Online Access: | https://www.ijsmdo.org/articles/smdo/pdf/2010/03/smdo2010014.pdf |
_version_ | 1818616443600633856 |
---|---|
author | Hudec Zdenek |
author_facet | Hudec Zdenek |
author_sort | Hudec Zdenek |
collection | DOAJ |
description | GMAW (Gas-Metal-Arc-Welding) as the last of main technologies, yet based for a most part on manual (semiautomatic) work, is gradually automated. But traditional advances of weld design, technology and quality assurance is not essentially changing. The result is non-efficient welding (overwelding). Especially T-joint (fillet weld), that is the most employed type of joint in welded structures, due to its geometry is often overwelded and twice or 3 times as much volume must be filled with metal as is needed for desired size. That increases not only direct costs and weight but also the shrinkage force and distortion that cause other added costs. This paper presents a new access to Design and Process optimization of T-joint and V-grooved Welding, based on fillet and butt weld performance efficiency optimizing of given source-wiregas system with the help of set of experiments performance, proposed with DOE statistical method of central composite design. Moreover a new parametric field of stable metal transfer was discovered that markedly improves penetration and therefore performance efficiency. |
first_indexed | 2024-12-16T16:49:53Z |
format | Article |
id | doaj.art-b45a02e84347419faca5ca51a8a37548 |
institution | Directory Open Access Journal |
issn | 1779-627X 1779-6288 |
language | English |
last_indexed | 2024-12-16T16:49:53Z |
publishDate | 2010-07-01 |
publisher | EDP Sciences |
record_format | Article |
series | International Journal for Simulation and Multidisciplinary Design Optimization |
spelling | doaj.art-b45a02e84347419faca5ca51a8a375482022-12-21T22:24:05ZengEDP SciencesInternational Journal for Simulation and Multidisciplinary Design Optimization1779-627X1779-62882010-07-0143-410711610.1051/ijsmdo/2010014smdo2010014Optimization of Source-Wire-Gas Systems for Efficient Robot WeldingHudec ZdenekGMAW (Gas-Metal-Arc-Welding) as the last of main technologies, yet based for a most part on manual (semiautomatic) work, is gradually automated. But traditional advances of weld design, technology and quality assurance is not essentially changing. The result is non-efficient welding (overwelding). Especially T-joint (fillet weld), that is the most employed type of joint in welded structures, due to its geometry is often overwelded and twice or 3 times as much volume must be filled with metal as is needed for desired size. That increases not only direct costs and weight but also the shrinkage force and distortion that cause other added costs. This paper presents a new access to Design and Process optimization of T-joint and V-grooved Welding, based on fillet and butt weld performance efficiency optimizing of given source-wiregas system with the help of set of experiments performance, proposed with DOE statistical method of central composite design. Moreover a new parametric field of stable metal transfer was discovered that markedly improves penetration and therefore performance efficiency.https://www.ijsmdo.org/articles/smdo/pdf/2010/03/smdo2010014.pdfgmawfillet weldt-jointv-grooved jointoptimizationweld performance efficiency |
spellingShingle | Hudec Zdenek Optimization of Source-Wire-Gas Systems for Efficient Robot Welding International Journal for Simulation and Multidisciplinary Design Optimization gmaw fillet weld t-joint v-grooved joint optimization weld performance efficiency |
title | Optimization of Source-Wire-Gas Systems for Efficient Robot Welding |
title_full | Optimization of Source-Wire-Gas Systems for Efficient Robot Welding |
title_fullStr | Optimization of Source-Wire-Gas Systems for Efficient Robot Welding |
title_full_unstemmed | Optimization of Source-Wire-Gas Systems for Efficient Robot Welding |
title_short | Optimization of Source-Wire-Gas Systems for Efficient Robot Welding |
title_sort | optimization of source wire gas systems for efficient robot welding |
topic | gmaw fillet weld t-joint v-grooved joint optimization weld performance efficiency |
url | https://www.ijsmdo.org/articles/smdo/pdf/2010/03/smdo2010014.pdf |
work_keys_str_mv | AT hudeczdenek optimizationofsourcewiregassystemsforefficientrobotwelding |