Tension Estimation Method for Cable With Damper Using Natural Frequencies
In the maintenance of cable structures, such as cable-stayed bridges and extra-dosed bridges, it is necessary to estimate the tension acting on the cables. The safety of a cable is confirmed by checking whether the tension acting on the cable is within the allowable value. In current Japanese practi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-04-01
|
Series: | Frontiers in Built Environment |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/full |
_version_ | 1818599381622849536 |
---|---|
author | Aiko Furukawa Katsuya Hirose Ryosuke Kobayashi |
author_facet | Aiko Furukawa Katsuya Hirose Ryosuke Kobayashi |
author_sort | Aiko Furukawa |
collection | DOAJ |
description | In the maintenance of cable structures, such as cable-stayed bridges and extra-dosed bridges, it is necessary to estimate the tension acting on the cables. The safety of a cable is confirmed by checking whether the tension acting on the cable is within the allowable value. In current Japanese practice, the tension of a cable is estimated using the vibration method or the higher-order vibration method, which considers the natural frequencies of the cable. However, in recent years, the aerodynamic vibration of cables caused by wind has become a problem owing to the recent increase in the cable length and low damping performance of the cable itself. To suppress the aerodynamic vibration of cables, dampers are installed onto the cables. Because the damper changes the cable’s natural frequencies, the vibration method and higher-order vibration method are inappropriate for measuring the tension of a cable with a damper. In this paper, a new tension estimation method for a cable with a damper is proposed. To model a cable with a tensioned Bernoulli-Euler beam, theoretical equations for estimating the natural frequencies were derived. The proposed method inversely estimates the tension and bending stiffness of the cable and damper parameters, simultaneously, from the natural frequencies. The validity of the proposed method was confirmed by conducting numerical simulations and experiments. In the numerical verification, the performance of the proposed method was investigated using 80 numerical models. In the experimental verification, the estimation accuracy of the proposed method was investigated by considering 16 test cases. Thus, it was confirmed that the tension estimation accuracy was high, whereas the bending stiffness and damper parameter estimation accuracy was unsatisfactory. The tension estimation error was within 10% in all experimental cases, and within 5% if two test cases are excluded. The results obtained by the numerical and experimental verifications confirmed the effectiveness of the proposed method in tension estimation. |
first_indexed | 2024-12-16T12:18:42Z |
format | Article |
id | doaj.art-b45a4a07b44e47479b4f854c12dfabac |
institution | Directory Open Access Journal |
issn | 2297-3362 |
language | English |
last_indexed | 2024-12-16T12:18:42Z |
publishDate | 2021-04-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Built Environment |
spelling | doaj.art-b45a4a07b44e47479b4f854c12dfabac2022-12-21T22:32:02ZengFrontiers Media S.A.Frontiers in Built Environment2297-33622021-04-01710.3389/fbuil.2021.603857603857Tension Estimation Method for Cable With Damper Using Natural FrequenciesAiko Furukawa0Katsuya Hirose1Ryosuke Kobayashi2Department of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto, JapanDepartment of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto, JapanShinko Wire Company, Ltd., Hyogo, JapanIn the maintenance of cable structures, such as cable-stayed bridges and extra-dosed bridges, it is necessary to estimate the tension acting on the cables. The safety of a cable is confirmed by checking whether the tension acting on the cable is within the allowable value. In current Japanese practice, the tension of a cable is estimated using the vibration method or the higher-order vibration method, which considers the natural frequencies of the cable. However, in recent years, the aerodynamic vibration of cables caused by wind has become a problem owing to the recent increase in the cable length and low damping performance of the cable itself. To suppress the aerodynamic vibration of cables, dampers are installed onto the cables. Because the damper changes the cable’s natural frequencies, the vibration method and higher-order vibration method are inappropriate for measuring the tension of a cable with a damper. In this paper, a new tension estimation method for a cable with a damper is proposed. To model a cable with a tensioned Bernoulli-Euler beam, theoretical equations for estimating the natural frequencies were derived. The proposed method inversely estimates the tension and bending stiffness of the cable and damper parameters, simultaneously, from the natural frequencies. The validity of the proposed method was confirmed by conducting numerical simulations and experiments. In the numerical verification, the performance of the proposed method was investigated using 80 numerical models. In the experimental verification, the estimation accuracy of the proposed method was investigated by considering 16 test cases. Thus, it was confirmed that the tension estimation accuracy was high, whereas the bending stiffness and damper parameter estimation accuracy was unsatisfactory. The tension estimation error was within 10% in all experimental cases, and within 5% if two test cases are excluded. The results obtained by the numerical and experimental verifications confirmed the effectiveness of the proposed method in tension estimation.https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/fullestimation methodtensioncabledampernatural frequencies |
spellingShingle | Aiko Furukawa Katsuya Hirose Ryosuke Kobayashi Tension Estimation Method for Cable With Damper Using Natural Frequencies Frontiers in Built Environment estimation method tension cable damper natural frequencies |
title | Tension Estimation Method for Cable With Damper Using Natural Frequencies |
title_full | Tension Estimation Method for Cable With Damper Using Natural Frequencies |
title_fullStr | Tension Estimation Method for Cable With Damper Using Natural Frequencies |
title_full_unstemmed | Tension Estimation Method for Cable With Damper Using Natural Frequencies |
title_short | Tension Estimation Method for Cable With Damper Using Natural Frequencies |
title_sort | tension estimation method for cable with damper using natural frequencies |
topic | estimation method tension cable damper natural frequencies |
url | https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/full |
work_keys_str_mv | AT aikofurukawa tensionestimationmethodforcablewithdamperusingnaturalfrequencies AT katsuyahirose tensionestimationmethodforcablewithdamperusingnaturalfrequencies AT ryosukekobayashi tensionestimationmethodforcablewithdamperusingnaturalfrequencies |