Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have take...

Full description

Bibliographic Details
Main Authors: G. Myhre, B. H. Samset, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, R. C. Easter, J. Feichter, S. J. Ghan, D. Hauglustaine, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, M. T. Lund, G. Luo, X. Ma, T. van Noije, J. E. Penner, P. J. Rasch, A. Ruiz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, P. Wang, Z. Wang, L. Xu, H. Yu, F. Yu, J.-H. Yoon, K. Zhang, H. Zhang, C. Zhou
Format: Article
Language:English
Published: Copernicus Publications 2013-02-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf
_version_ 1818611629982482432
author G. Myhre
B. H. Samset
M. Schulz
Y. Balkanski
S. Bauer
T. K. Berntsen
H. Bian
N. Bellouin
M. Chin
T. Diehl
R. C. Easter
J. Feichter
S. J. Ghan
D. Hauglustaine
T. Iversen
S. Kinne
A. Kirkevåg
J.-F. Lamarque
G. Lin
X. Liu
M. T. Lund
G. Luo
X. Ma
T. van Noije
J. E. Penner
P. J. Rasch
A. Ruiz
Ø. Seland
R. B. Skeie
P. Stier
T. Takemura
K. Tsigaridis
P. Wang
Z. Wang
L. Xu
H. Yu
F. Yu
J.-H. Yoon
K. Zhang
H. Zhang
C. Zhou
author_facet G. Myhre
B. H. Samset
M. Schulz
Y. Balkanski
S. Bauer
T. K. Berntsen
H. Bian
N. Bellouin
M. Chin
T. Diehl
R. C. Easter
J. Feichter
S. J. Ghan
D. Hauglustaine
T. Iversen
S. Kinne
A. Kirkevåg
J.-F. Lamarque
G. Lin
X. Liu
M. T. Lund
G. Luo
X. Ma
T. van Noije
J. E. Penner
P. J. Rasch
A. Ruiz
Ø. Seland
R. B. Skeie
P. Stier
T. Takemura
K. Tsigaridis
P. Wang
Z. Wang
L. Xu
H. Yu
F. Yu
J.-H. Yoon
K. Zhang
H. Zhang
C. Zhou
author_sort G. Myhre
collection DOAJ
description We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm<sup>−2</sup>, with a mean of −0.27 Wm<sup>−2</sup> for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm<sup>−2</sup>. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
first_indexed 2024-12-16T15:33:23Z
format Article
id doaj.art-b4625a925398478d8f8f59977b722256
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-16T15:33:23Z
publishDate 2013-02-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-b4625a925398478d8f8f59977b7222562022-12-21T22:26:17ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-02-011341853187710.5194/acp-13-1853-2013Radiative forcing of the direct aerosol effect from AeroCom Phase II simulationsG. MyhreB. H. SamsetM. SchulzY. BalkanskiS. BauerT. K. BerntsenH. BianN. BellouinM. ChinT. DiehlR. C. EasterJ. FeichterS. J. GhanD. HauglustaineT. IversenS. KinneA. KirkevågJ.-F. LamarqueG. LinX. LiuM. T. LundG. LuoX. MaT. van NoijeJ. E. PennerP. J. RaschA. RuizØ. SelandR. B. SkeieP. StierT. TakemuraK. TsigaridisP. WangZ. WangL. XuH. YuF. YuJ.-H. YoonK. ZhangH. ZhangC. ZhouWe report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm<sup>−2</sup>, with a mean of −0.27 Wm<sup>−2</sup> for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm<sup>−2</sup>. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf
spellingShingle G. Myhre
B. H. Samset
M. Schulz
Y. Balkanski
S. Bauer
T. K. Berntsen
H. Bian
N. Bellouin
M. Chin
T. Diehl
R. C. Easter
J. Feichter
S. J. Ghan
D. Hauglustaine
T. Iversen
S. Kinne
A. Kirkevåg
J.-F. Lamarque
G. Lin
X. Liu
M. T. Lund
G. Luo
X. Ma
T. van Noije
J. E. Penner
P. J. Rasch
A. Ruiz
Ø. Seland
R. B. Skeie
P. Stier
T. Takemura
K. Tsigaridis
P. Wang
Z. Wang
L. Xu
H. Yu
F. Yu
J.-H. Yoon
K. Zhang
H. Zhang
C. Zhou
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
Atmospheric Chemistry and Physics
title Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
title_full Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
title_fullStr Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
title_full_unstemmed Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
title_short Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
title_sort radiative forcing of the direct aerosol effect from aerocom phase ii simulations
url http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf
work_keys_str_mv AT gmyhre radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT bhsamset radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT mschulz radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT ybalkanski radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT sbauer radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT tkberntsen radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT hbian radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT nbellouin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT mchin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT tdiehl radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT rceaster radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT jfeichter radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT sjghan radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT dhauglustaine radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT tiversen radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT skinne radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT akirkevag radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT jflamarque radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT glin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT xliu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT mtlund radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT gluo radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT xma radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT tvannoije radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT jepenner radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT pjrasch radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT aruiz radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT øseland radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT rbskeie radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT pstier radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT ttakemura radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT ktsigaridis radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT pwang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT zwang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT lxu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT hyu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT fyu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT jhyoon radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT kzhang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT hzhang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations
AT czhou radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations