Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have take...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf |
_version_ | 1818611629982482432 |
---|---|
author | G. Myhre B. H. Samset M. Schulz Y. Balkanski S. Bauer T. K. Berntsen H. Bian N. Bellouin M. Chin T. Diehl R. C. Easter J. Feichter S. J. Ghan D. Hauglustaine T. Iversen S. Kinne A. Kirkevåg J.-F. Lamarque G. Lin X. Liu M. T. Lund G. Luo X. Ma T. van Noije J. E. Penner P. J. Rasch A. Ruiz Ø. Seland R. B. Skeie P. Stier T. Takemura K. Tsigaridis P. Wang Z. Wang L. Xu H. Yu F. Yu J.-H. Yoon K. Zhang H. Zhang C. Zhou |
author_facet | G. Myhre B. H. Samset M. Schulz Y. Balkanski S. Bauer T. K. Berntsen H. Bian N. Bellouin M. Chin T. Diehl R. C. Easter J. Feichter S. J. Ghan D. Hauglustaine T. Iversen S. Kinne A. Kirkevåg J.-F. Lamarque G. Lin X. Liu M. T. Lund G. Luo X. Ma T. van Noije J. E. Penner P. J. Rasch A. Ruiz Ø. Seland R. B. Skeie P. Stier T. Takemura K. Tsigaridis P. Wang Z. Wang L. Xu H. Yu F. Yu J.-H. Yoon K. Zhang H. Zhang C. Zhou |
author_sort | G. Myhre |
collection | DOAJ |
description | We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm<sup>−2</sup>, with a mean of −0.27 Wm<sup>−2</sup> for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm<sup>−2</sup>. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results. |
first_indexed | 2024-12-16T15:33:23Z |
format | Article |
id | doaj.art-b4625a925398478d8f8f59977b722256 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-16T15:33:23Z |
publishDate | 2013-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-b4625a925398478d8f8f59977b7222562022-12-21T22:26:17ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-02-011341853187710.5194/acp-13-1853-2013Radiative forcing of the direct aerosol effect from AeroCom Phase II simulationsG. MyhreB. H. SamsetM. SchulzY. BalkanskiS. BauerT. K. BerntsenH. BianN. BellouinM. ChinT. DiehlR. C. EasterJ. FeichterS. J. GhanD. HauglustaineT. IversenS. KinneA. KirkevågJ.-F. LamarqueG. LinX. LiuM. T. LundG. LuoX. MaT. van NoijeJ. E. PennerP. J. RaschA. RuizØ. SelandR. B. SkeieP. StierT. TakemuraK. TsigaridisP. WangZ. WangL. XuH. YuF. YuJ.-H. YoonK. ZhangH. ZhangC. ZhouWe report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from −0.58 to −0.02 Wm<sup>−2</sup>, with a mean of −0.27 Wm<sup>−2</sup> for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of −0.35 Wm<sup>−2</sup>. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf |
spellingShingle | G. Myhre B. H. Samset M. Schulz Y. Balkanski S. Bauer T. K. Berntsen H. Bian N. Bellouin M. Chin T. Diehl R. C. Easter J. Feichter S. J. Ghan D. Hauglustaine T. Iversen S. Kinne A. Kirkevåg J.-F. Lamarque G. Lin X. Liu M. T. Lund G. Luo X. Ma T. van Noije J. E. Penner P. J. Rasch A. Ruiz Ø. Seland R. B. Skeie P. Stier T. Takemura K. Tsigaridis P. Wang Z. Wang L. Xu H. Yu F. Yu J.-H. Yoon K. Zhang H. Zhang C. Zhou Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations Atmospheric Chemistry and Physics |
title | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations |
title_full | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations |
title_fullStr | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations |
title_full_unstemmed | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations |
title_short | Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations |
title_sort | radiative forcing of the direct aerosol effect from aerocom phase ii simulations |
url | http://www.atmos-chem-phys.net/13/1853/2013/acp-13-1853-2013.pdf |
work_keys_str_mv | AT gmyhre radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT bhsamset radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT mschulz radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT ybalkanski radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT sbauer radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT tkberntsen radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT hbian radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT nbellouin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT mchin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT tdiehl radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT rceaster radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT jfeichter radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT sjghan radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT dhauglustaine radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT tiversen radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT skinne radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT akirkevag radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT jflamarque radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT glin radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT xliu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT mtlund radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT gluo radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT xma radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT tvannoije radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT jepenner radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT pjrasch radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT aruiz radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT øseland radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT rbskeie radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT pstier radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT ttakemura radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT ktsigaridis radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT pwang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT zwang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT lxu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT hyu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT fyu radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT jhyoon radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT kzhang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT hzhang radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations AT czhou radiativeforcingofthedirectaerosoleffectfromaerocomphaseiisimulations |