FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model

Hong Zhu,* Jiarui Peng,* Wei Li Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming, 650011, Yunnan, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei LiDepartment of Endocrinology, The Third People’s...

Full description

Bibliographic Details
Main Authors: Zhu H, Peng J, Li W
Format: Article
Language:English
Published: Dove Medical Press 2021-09-01
Series:Diabetes, Metabolic Syndrome and Obesity
Subjects:
Online Access:https://www.dovepress.com/foxa1-suppresses-satb1-transcription-and-inactivates-the-wnt-catenin-p-peer-reviewed-fulltext-article-DMSO
_version_ 1811174031720710144
author Zhu H
Peng J
Li W
author_facet Zhu H
Peng J
Li W
author_sort Zhu H
collection DOAJ
description Hong Zhu,* Jiarui Peng,* Wei Li Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming, 650011, Yunnan, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei LiDepartment of Endocrinology, The Third People’s Hospital of Yunnan Province, No. 292, Beijing Road, Guandu District, Kunming, 650011, Yunnan, People’s Republic of ChinaTel/Fax +86-871-63194278Email Liwei813_2@126.comObjective: Diabetic nephropathy (DN) represents the most common diabetic complication that may lead to end-stage renal disease. This work focused on the effect of FOXA1 on the DN development and the molecular mechanism.Methods: A mouse model of DN was induced by high-fat diets and streptozotocin. The concentrations of blood glucose and urinary protein in mice, and the pathological changes in mouse kidney tissues were determined. A podocyte cell line MPC-5 was treated with high glucose (HG) to mimic a DN-like condition in vitro. FOXA1 and SATB1 were overexpressed in HG-treated MPC-5 cells and in DN mice to explore their effects on cell proliferation and apoptosis, and on pathological changes in mouse kidney tissues. The binding relationship between FOXA1 and STAB1 was predicted and validated. Activation of the Wnt/β-catenin pathway was detected.Results: FOXA1 was poorly expressed in the kidney tissues of DN mice. Overexpression of FOXA1 reduced the concentrations of fasting blood glucose and 24-h urinary protein in mice. It also suppressed the accumulation of glomerular mesangial matrix and hyperplasia of glomerular basement membrane, and reduced collagen deposition and interstitial fibrosis in mouse kidney. Also, FOXA1 reduced HG-induced apoptosis of MPC-5 cells. FOXA1 bound to the promoter region of SATB1 for transcription suppression. Overexpression of SATB1 activated the Wnt/β-catenin pathway and blocked the protective roles of FOXA1 in DN mice and in HG-treated MPC-5 cells.Conclusion: This study demonstrated that FOXA1 transcriptionally suppresses SATB1 expression and inactivates the Wnt/β-catenin signaling pathway, thereby inhibiting podocyte apoptosis and DN progression.Keywords: diabetic nephropathy, FOXA1, SATB1, Wnt/β-catenin, MPC-5
first_indexed 2024-04-10T17:57:36Z
format Article
id doaj.art-b46877db53b247ffb6760b51a458bd31
institution Directory Open Access Journal
issn 1178-7007
language English
last_indexed 2024-04-10T17:57:36Z
publishDate 2021-09-01
publisher Dove Medical Press
record_format Article
series Diabetes, Metabolic Syndrome and Obesity
spelling doaj.art-b46877db53b247ffb6760b51a458bd312023-02-02T17:43:30ZengDove Medical PressDiabetes, Metabolic Syndrome and Obesity1178-70072021-09-01Volume 143975398768696FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse ModelZhu HPeng JLi WHong Zhu,* Jiarui Peng,* Wei Li Department of Endocrinology, The Third People’s Hospital of Yunnan Province, Kunming, 650011, Yunnan, People’s Republic of China*These authors contributed equally to this workCorrespondence: Wei LiDepartment of Endocrinology, The Third People’s Hospital of Yunnan Province, No. 292, Beijing Road, Guandu District, Kunming, 650011, Yunnan, People’s Republic of ChinaTel/Fax +86-871-63194278Email Liwei813_2@126.comObjective: Diabetic nephropathy (DN) represents the most common diabetic complication that may lead to end-stage renal disease. This work focused on the effect of FOXA1 on the DN development and the molecular mechanism.Methods: A mouse model of DN was induced by high-fat diets and streptozotocin. The concentrations of blood glucose and urinary protein in mice, and the pathological changes in mouse kidney tissues were determined. A podocyte cell line MPC-5 was treated with high glucose (HG) to mimic a DN-like condition in vitro. FOXA1 and SATB1 were overexpressed in HG-treated MPC-5 cells and in DN mice to explore their effects on cell proliferation and apoptosis, and on pathological changes in mouse kidney tissues. The binding relationship between FOXA1 and STAB1 was predicted and validated. Activation of the Wnt/β-catenin pathway was detected.Results: FOXA1 was poorly expressed in the kidney tissues of DN mice. Overexpression of FOXA1 reduced the concentrations of fasting blood glucose and 24-h urinary protein in mice. It also suppressed the accumulation of glomerular mesangial matrix and hyperplasia of glomerular basement membrane, and reduced collagen deposition and interstitial fibrosis in mouse kidney. Also, FOXA1 reduced HG-induced apoptosis of MPC-5 cells. FOXA1 bound to the promoter region of SATB1 for transcription suppression. Overexpression of SATB1 activated the Wnt/β-catenin pathway and blocked the protective roles of FOXA1 in DN mice and in HG-treated MPC-5 cells.Conclusion: This study demonstrated that FOXA1 transcriptionally suppresses SATB1 expression and inactivates the Wnt/β-catenin signaling pathway, thereby inhibiting podocyte apoptosis and DN progression.Keywords: diabetic nephropathy, FOXA1, SATB1, Wnt/β-catenin, MPC-5https://www.dovepress.com/foxa1-suppresses-satb1-transcription-and-inactivates-the-wnt-catenin-p-peer-reviewed-fulltext-article-DMSOdiabetic nephropathyfoxa1satb1wnt/β-cateninmpc-5
spellingShingle Zhu H
Peng J
Li W
FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
Diabetes, Metabolic Syndrome and Obesity
diabetic nephropathy
foxa1
satb1
wnt/β-catenin
mpc-5
title FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
title_full FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
title_fullStr FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
title_full_unstemmed FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
title_short FOXA1 Suppresses SATB1 Transcription and Inactivates the Wnt/β-Catenin Pathway to Alleviate Diabetic Nephropathy in a Mouse Model
title_sort foxa1 suppresses satb1 transcription and inactivates the wnt beta catenin pathway to alleviate diabetic nephropathy in a mouse model
topic diabetic nephropathy
foxa1
satb1
wnt/β-catenin
mpc-5
url https://www.dovepress.com/foxa1-suppresses-satb1-transcription-and-inactivates-the-wnt-catenin-p-peer-reviewed-fulltext-article-DMSO
work_keys_str_mv AT zhuh foxa1suppressessatb1transcriptionandinactivatesthewntbetacateninpathwaytoalleviatediabeticnephropathyinamousemodel
AT pengj foxa1suppressessatb1transcriptionandinactivatesthewntbetacateninpathwaytoalleviatediabeticnephropathyinamousemodel
AT liw foxa1suppressessatb1transcriptionandinactivatesthewntbetacateninpathwaytoalleviatediabeticnephropathyinamousemodel