Two-Dimensional Harmonic Retrieval in Correlative Noise Based on Genetic Algorithm
We propose a niche Genetic algorithm (GA) for the two-dimensional (2D) harmonic retrieval in the presence of correlative zero-mean, multiplicative, and additive noise. Firstly, we introduce a 2D fourth-order time-average moment spectrum which has extremum values at the harmonic frequencies. On this...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://dx.doi.org/10.1155/2010/569371 |
Summary: | We propose a niche Genetic algorithm (GA) for the two-dimensional (2D) harmonic retrieval in the presence of correlative zero-mean, multiplicative, and additive noise. Firstly, we introduce a 2D fourth-order time-average moment spectrum which has extremum values at the harmonic frequencies. On this basis, the problem of harmonic retrieval is treated as a problem of finding the extremum values for which the niche GA is resorted. Utilizing the global searching ability of the GA, this method can improve the frequency estimation performance. The effectiveness of the proposed algorithm is demonstrated through computer simulations. |
---|---|
ISSN: | 1687-6172 1687-6180 |