Mitochondrial microRNAs: A Putative Role in Tissue Regeneration
The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Biology |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-7737/9/12/486 |
_version_ | 1797543939512729600 |
---|---|
author | Sílvia C. Rodrigues Renato M. S. Cardoso Filipe V. Duarte |
author_facet | Sílvia C. Rodrigues Renato M. S. Cardoso Filipe V. Duarte |
author_sort | Sílvia C. Rodrigues |
collection | DOAJ |
description | The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment. |
first_indexed | 2024-03-10T13:52:36Z |
format | Article |
id | doaj.art-b4849318d0c5444e9859403c6735bafc |
institution | Directory Open Access Journal |
issn | 2079-7737 |
language | English |
last_indexed | 2024-03-10T13:52:36Z |
publishDate | 2020-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Biology |
spelling | doaj.art-b4849318d0c5444e9859403c6735bafc2023-11-21T01:58:54ZengMDPI AGBiology2079-77372020-12-0191248610.3390/biology9120486Mitochondrial microRNAs: A Putative Role in Tissue RegenerationSílvia C. Rodrigues0Renato M. S. Cardoso1Filipe V. Duarte2Exogenus Therapeutics, 3060-197 Cantanhede, PortugalLaserLeap Technologies, 3025-307 Coimbra, PortugalCNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, PortugalThe most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.https://www.mdpi.com/2079-7737/9/12/486microRNAmitochondriamitomiRstissue regeneration |
spellingShingle | Sílvia C. Rodrigues Renato M. S. Cardoso Filipe V. Duarte Mitochondrial microRNAs: A Putative Role in Tissue Regeneration Biology microRNA mitochondria mitomiRs tissue regeneration |
title | Mitochondrial microRNAs: A Putative Role in Tissue Regeneration |
title_full | Mitochondrial microRNAs: A Putative Role in Tissue Regeneration |
title_fullStr | Mitochondrial microRNAs: A Putative Role in Tissue Regeneration |
title_full_unstemmed | Mitochondrial microRNAs: A Putative Role in Tissue Regeneration |
title_short | Mitochondrial microRNAs: A Putative Role in Tissue Regeneration |
title_sort | mitochondrial micrornas a putative role in tissue regeneration |
topic | microRNA mitochondria mitomiRs tissue regeneration |
url | https://www.mdpi.com/2079-7737/9/12/486 |
work_keys_str_mv | AT silviacrodrigues mitochondrialmicrornasaputativeroleintissueregeneration AT renatomscardoso mitochondrialmicrornasaputativeroleintissueregeneration AT filipevduarte mitochondrialmicrornasaputativeroleintissueregeneration |