On Schur Convexity of Some Symmetric Functions
<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <gra...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/543250 |
_version_ | 1818877673973219328 |
---|---|
author | Chu Yu-Ming Xia Wei-Feng |
author_facet | Chu Yu-Ming Xia Wei-Feng |
author_sort | Chu Yu-Ming |
collection | DOAJ |
description | <p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <graphic file="1029-242X-2010-543250-i3.gif"/></inline-formula> is defined as <inline-formula> <graphic file="1029-242X-2010-543250-i4.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-543250-i5.gif"/></inline-formula> are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of <inline-formula> <graphic file="1029-242X-2010-543250-i6.gif"/></inline-formula> are discussed. As consequences, several inequalities are established by use of the theory of majorization.</p> |
first_indexed | 2024-12-19T14:02:02Z |
format | Article |
id | doaj.art-b4862d7843754d8bac442e23cb068cf6 |
institution | Directory Open Access Journal |
issn | 1025-5834 1029-242X |
language | English |
last_indexed | 2024-12-19T14:02:02Z |
publishDate | 2010-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-b4862d7843754d8bac442e23cb068cf62022-12-21T20:18:25ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101543250On Schur Convexity of Some Symmetric FunctionsChu Yu-MingXia Wei-Feng<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <graphic file="1029-242X-2010-543250-i3.gif"/></inline-formula> is defined as <inline-formula> <graphic file="1029-242X-2010-543250-i4.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-543250-i5.gif"/></inline-formula> are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of <inline-formula> <graphic file="1029-242X-2010-543250-i6.gif"/></inline-formula> are discussed. As consequences, several inequalities are established by use of the theory of majorization.</p>http://www.journalofinequalitiesandapplications.com/content/2010/543250 |
spellingShingle | Chu Yu-Ming Xia Wei-Feng On Schur Convexity of Some Symmetric Functions Journal of Inequalities and Applications |
title | On Schur Convexity of Some Symmetric Functions |
title_full | On Schur Convexity of Some Symmetric Functions |
title_fullStr | On Schur Convexity of Some Symmetric Functions |
title_full_unstemmed | On Schur Convexity of Some Symmetric Functions |
title_short | On Schur Convexity of Some Symmetric Functions |
title_sort | on schur convexity of some symmetric functions |
url | http://www.journalofinequalitiesandapplications.com/content/2010/543250 |
work_keys_str_mv | AT chuyuming onschurconvexityofsomesymmetricfunctions AT xiaweifeng onschurconvexityofsomesymmetricfunctions |