On Schur Convexity of Some Symmetric Functions

<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <gra...

Full description

Bibliographic Details
Main Authors: Chu Yu-Ming, Xia Wei-Feng
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/543250
_version_ 1818877673973219328
author Chu Yu-Ming
Xia Wei-Feng
author_facet Chu Yu-Ming
Xia Wei-Feng
author_sort Chu Yu-Ming
collection DOAJ
description <p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <graphic file="1029-242X-2010-543250-i3.gif"/></inline-formula> is defined as <inline-formula> <graphic file="1029-242X-2010-543250-i4.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-543250-i5.gif"/></inline-formula> are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of <inline-formula> <graphic file="1029-242X-2010-543250-i6.gif"/></inline-formula> are discussed. As consequences, several inequalities are established by use of the theory of majorization.</p>
first_indexed 2024-12-19T14:02:02Z
format Article
id doaj.art-b4862d7843754d8bac442e23cb068cf6
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-19T14:02:02Z
publishDate 2010-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-b4862d7843754d8bac442e23cb068cf62022-12-21T20:18:25ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101543250On Schur Convexity of Some Symmetric FunctionsChu Yu-MingXia Wei-Feng<p/> <p>For <inline-formula> <graphic file="1029-242X-2010-543250-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-543250-i2.gif"/></inline-formula>, the symmetric function <inline-formula> <graphic file="1029-242X-2010-543250-i3.gif"/></inline-formula> is defined as <inline-formula> <graphic file="1029-242X-2010-543250-i4.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-543250-i5.gif"/></inline-formula> are positive integers. In this paper, the Schur convexity, Schur multiplicative convexity, and Schur harmonic convexity of <inline-formula> <graphic file="1029-242X-2010-543250-i6.gif"/></inline-formula> are discussed. As consequences, several inequalities are established by use of the theory of majorization.</p>http://www.journalofinequalitiesandapplications.com/content/2010/543250
spellingShingle Chu Yu-Ming
Xia Wei-Feng
On Schur Convexity of Some Symmetric Functions
Journal of Inequalities and Applications
title On Schur Convexity of Some Symmetric Functions
title_full On Schur Convexity of Some Symmetric Functions
title_fullStr On Schur Convexity of Some Symmetric Functions
title_full_unstemmed On Schur Convexity of Some Symmetric Functions
title_short On Schur Convexity of Some Symmetric Functions
title_sort on schur convexity of some symmetric functions
url http://www.journalofinequalitiesandapplications.com/content/2010/543250
work_keys_str_mv AT chuyuming onschurconvexityofsomesymmetricfunctions
AT xiaweifeng onschurconvexityofsomesymmetricfunctions