Particle Production at High Energy: DGLAP, BFKL and Beyond

Particle production in high energy hadronic/nuclear collisions in the Bjorken limit <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mo>,</mo> <msqrt> <mi>s&...

Full description

Bibliographic Details
Main Author: Jamal Jalilian-Marian
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/5/2/64
_version_ 1811187351644274688
author Jamal Jalilian-Marian
author_facet Jamal Jalilian-Marian
author_sort Jamal Jalilian-Marian
collection DOAJ
description Particle production in high energy hadronic/nuclear collisions in the Bjorken limit <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mo>,</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula> can be described in the collinear factorization framework of perturbative Quantum ChromoDynamics (QCD). On the other hand in the Regge limit, at fixed and not too high <inline-formula> <math display="inline"> <semantics> <msup> <mi>Q</mi> <mn>2</mn> </msup> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, a <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mo>&perp;</mo> </msub> </semantics> </math> </inline-formula> factorization approach (or a generalization of it) is the appropriate framework. A new effective action approach to QCD in the Regge limit, known as the Color Glass Condensate (CGC) formalism, has been developed which allows one to investigate particle production in high energy collisions in the kinematics where collinear factorization breaks down. Here we give a brief overview of particle production in CGC framework and the evolution equation which governs energy dependence of the observables in this formalism. We show that the new evolution equation reduces to previously known evolution equations in the appropriate limits.
first_indexed 2024-04-11T14:00:46Z
format Article
id doaj.art-b488ca7e977b42adbdc28f023db3805c
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-04-11T14:00:46Z
publishDate 2019-02-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-b488ca7e977b42adbdc28f023db3805c2022-12-22T04:20:08ZengMDPI AGUniverse2218-19972019-02-01526410.3390/universe5020064universe5020064Particle Production at High Energy: DGLAP, BFKL and BeyondJamal Jalilian-Marian0Natural Sciences Department, Baruch College, New York, NY 10010, USAParticle production in high energy hadronic/nuclear collisions in the Bjorken limit <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>Q</mi> <mn>2</mn> </msup> <mo>,</mo> <msqrt> <mi>s</mi> </msqrt> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula> can be described in the collinear factorization framework of perturbative Quantum ChromoDynamics (QCD). On the other hand in the Regge limit, at fixed and not too high <inline-formula> <math display="inline"> <semantics> <msup> <mi>Q</mi> <mn>2</mn> </msup> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>&#8594;</mo> <mo>&#8734;</mo> </mrow> </semantics> </math> </inline-formula>, a <inline-formula> <math display="inline"> <semantics> <msub> <mi>k</mi> <mo>&perp;</mo> </msub> </semantics> </math> </inline-formula> factorization approach (or a generalization of it) is the appropriate framework. A new effective action approach to QCD in the Regge limit, known as the Color Glass Condensate (CGC) formalism, has been developed which allows one to investigate particle production in high energy collisions in the kinematics where collinear factorization breaks down. Here we give a brief overview of particle production in CGC framework and the evolution equation which governs energy dependence of the observables in this formalism. We show that the new evolution equation reduces to previously known evolution equations in the appropriate limits.https://www.mdpi.com/2218-1997/5/2/64quantum chromodynamicssmall xevolution equationsJIMWLKBFKLBJKP
spellingShingle Jamal Jalilian-Marian
Particle Production at High Energy: DGLAP, BFKL and Beyond
Universe
quantum chromodynamics
small x
evolution equations
JIMWLK
BFKL
BJKP
title Particle Production at High Energy: DGLAP, BFKL and Beyond
title_full Particle Production at High Energy: DGLAP, BFKL and Beyond
title_fullStr Particle Production at High Energy: DGLAP, BFKL and Beyond
title_full_unstemmed Particle Production at High Energy: DGLAP, BFKL and Beyond
title_short Particle Production at High Energy: DGLAP, BFKL and Beyond
title_sort particle production at high energy dglap bfkl and beyond
topic quantum chromodynamics
small x
evolution equations
JIMWLK
BFKL
BJKP
url https://www.mdpi.com/2218-1997/5/2/64
work_keys_str_mv AT jamaljalilianmarian particleproductionathighenergydglapbfklandbeyond