Summary: | Purpose: We designed a paired controlled study to investigate the role of the suprascapular nerve (SSN) in rotator cuff healing using a rat tear model, and we hypothesised that rotator cuff healing is impaired in the absence of a healthy SSN. Methods: Bilateral supraspinatus tenotomy from the great tuberosity was performed for 36 Wistar rats, which was then repaired immediately. A defect on the SSN was made on the right side, and a sham surgery was performed on the SSN at the left side. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) testing, evaluated at 3, 6, and 9 weeks after surgery. Results: The bone–tendon junction on the nerve-intact side showed significantly better biomechanical characteristics than the nerve-injured side in terms of maximum load, maximum stress over time, stiffness at 9 weeks, and Young's modulus at 3 and 9 weeks. On the nerve-injured side, significantly smaller fibrocartilage layers and muscle fibres could be obtained over time. In addition, on the nerve-injured side, inferior bone–tendon interface formation was obtained in terms of cell maturity, cell alignment, collagen orientation, and the occurrence of tidemark and Sharpey's fibres through 9 weeks. In addition, neuropeptide Y was secreted in the nerve-intact group at 6 and 9 weeks. Conclusion: This study showed the inferior healing of the bone–tendon junction on the nerve-injured side compared with the nerve-intact side, which indicates that the SSN plays an important role in rotator cuff healing. Surgeons should pay more attention to SSN injury when treating patients with rotator cuff tear.
|