The kinesin Kif21b regulates radial migration of cortical projection neurons through a non-canonical function on actin cytoskeleton

Summary: Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection...

Full description

Bibliographic Details
Main Authors: José Rivera Alvarez, Laure Asselin, Peggy Tilly, Roxane Benoit, Claire Batisse, Ludovic Richert, Julien Batisse, Bastien Morlet, Florian Levet, Noémie Schwaller, Yves Mély, Marc Ruff, Anne-Cécile Reymann, Juliette D. Godin
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723007556
Description
Summary:Summary: Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.
ISSN:2211-1247