Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus

The main objective of this study is to establish two important right <i>q</i>-integral equalities involving a right-quantum derivative with parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mro...

Full description

Bibliographic Details
Main Authors: Dafang Zhao, Ghazala Gulshan, Muhammad Aamir Ali, Kamsing Nonlaopon
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/444
_version_ 1797486385706303488
author Dafang Zhao
Ghazala Gulshan
Muhammad Aamir Ali
Kamsing Nonlaopon
author_facet Dafang Zhao
Ghazala Gulshan
Muhammad Aamir Ali
Kamsing Nonlaopon
author_sort Dafang Zhao
collection DOAJ
description The main objective of this study is to establish two important right <i>q</i>-integral equalities involving a right-quantum derivative with parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>. Then, utilizing these equalities, we derive some new variants for midpoint- and trapezoid-type inequalities for the right-quantum integral via differentiable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-convex functions. The fundamental benefit of these inequalities is that they may be transformed into <i>q</i>-midpoint- and <i>q</i>-trapezoid-type inequalities for convex functions, classical midpoint inequalities for convex functions and classical trapezoid-type inequalities for convex functions are transformed without having to prove each one independently. In addition, we present some applications of our results to special means of positive real numbers. It is expected that the ideas and techniques may stimulate further research in this field.
first_indexed 2024-03-09T23:32:25Z
format Article
id doaj.art-b4c1dd430f494f26909923c40519cd1c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:32:25Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-b4c1dd430f494f26909923c40519cd1c2023-11-23T17:07:36ZengMDPI AGMathematics2227-73902022-01-0110344410.3390/math10030444Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-CalculusDafang Zhao0Ghazala Gulshan1Muhammad Aamir Ali2Kamsing Nonlaopon3School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, ChinaDepartment of Mathematics, Faculty of Science, Mirpur University of Science and Technology (MUST), Mirpur 10250, PakistanJiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, ChinaDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandThe main objective of this study is to establish two important right <i>q</i>-integral equalities involving a right-quantum derivative with parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>. Then, utilizing these equalities, we derive some new variants for midpoint- and trapezoid-type inequalities for the right-quantum integral via differentiable <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>m</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>-convex functions. The fundamental benefit of these inequalities is that they may be transformed into <i>q</i>-midpoint- and <i>q</i>-trapezoid-type inequalities for convex functions, classical midpoint inequalities for convex functions and classical trapezoid-type inequalities for convex functions are transformed without having to prove each one independently. In addition, we present some applications of our results to special means of positive real numbers. It is expected that the ideas and techniques may stimulate further research in this field.https://www.mdpi.com/2227-7390/10/3/444midpoint inequalitiestrapezoid inequalitiesquantum calculus(<i>α</i>, <i>m</i>)-convex functions
spellingShingle Dafang Zhao
Ghazala Gulshan
Muhammad Aamir Ali
Kamsing Nonlaopon
Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
Mathematics
midpoint inequalities
trapezoid inequalities
quantum calculus
(<i>α</i>, <i>m</i>)-convex functions
title Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
title_full Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
title_fullStr Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
title_full_unstemmed Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
title_short Some New Midpoint and Trapezoidal-Type Inequalities for General Convex Functions in <i>q</i>-Calculus
title_sort some new midpoint and trapezoidal type inequalities for general convex functions in i q i calculus
topic midpoint inequalities
trapezoid inequalities
quantum calculus
(<i>α</i>, <i>m</i>)-convex functions
url https://www.mdpi.com/2227-7390/10/3/444
work_keys_str_mv AT dafangzhao somenewmidpointandtrapezoidaltypeinequalitiesforgeneralconvexfunctionsiniqicalculus
AT ghazalagulshan somenewmidpointandtrapezoidaltypeinequalitiesforgeneralconvexfunctionsiniqicalculus
AT muhammadaamirali somenewmidpointandtrapezoidaltypeinequalitiesforgeneralconvexfunctionsiniqicalculus
AT kamsingnonlaopon somenewmidpointandtrapezoidaltypeinequalitiesforgeneralconvexfunctionsiniqicalculus