Methodology for multi-temporal prediction of crop rotations using recurrent neural networks

In a context of growing demand for food and the scarcity of natural resources, the development of more sustainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural activities on soil and water and to be mindful of the carbon footprint, while mai...

Full description

Bibliographic Details
Main Authors: Ambre Dupuis, Camélia Dadouchi, Bruno Agard
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:Smart Agricultural Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772375522001162
_version_ 1797838529922859008
author Ambre Dupuis
Camélia Dadouchi
Bruno Agard
author_facet Ambre Dupuis
Camélia Dadouchi
Bruno Agard
author_sort Ambre Dupuis
collection DOAJ
description In a context of growing demand for food and the scarcity of natural resources, the development of more sustainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural activities on soil and water and to be mindful of the carbon footprint, while maintaining crop yields and economic benefits for producers. Crop rotation is a valuable tool in sustainable agriculture, but this technique has to be appropriately coupled with sustainable fertilization plans to optimize crops. The proposed methodology uses recurrent neural networks (RNN); more precisely, LSTMs, in a Seq2Seq architecture, to predict the most probable scenarios of crop rotations to be exploited in a field in subsequent growing seasons, according to cropping habits. The output can be used in crop models to build a decision support system for greater sustainability in agricultural production by allowing producers to choose the strategy that offers the best compromise between profitability and environmental impact.
first_indexed 2024-04-09T15:43:24Z
format Article
id doaj.art-b4e014a405d3457785ad42656f03f378
institution Directory Open Access Journal
issn 2772-3755
language English
last_indexed 2024-04-09T15:43:24Z
publishDate 2023-08-01
publisher Elsevier
record_format Article
series Smart Agricultural Technology
spelling doaj.art-b4e014a405d3457785ad42656f03f3782023-04-27T06:08:20ZengElsevierSmart Agricultural Technology2772-37552023-08-014100152Methodology for multi-temporal prediction of crop rotations using recurrent neural networksAmbre Dupuis0Camélia Dadouchi1Bruno Agard2Corresponding author.; Laboratoire en Intelligence des Données (LID), Canada; Centre Interuniversitaire de Recherche sur les Réseaux dEntreprise, la Logistique et le Transport (CIRRELT), Canada; Département de mathématiques et génie industriel Polytechnique Montréal, CP 6079, succ. Centre-Ville, Montréal, Québec, CanadaLaboratoire en Intelligence des Données (LID), Canada; Centre Interuniversitaire de Recherche sur les Réseaux dEntreprise, la Logistique et le Transport (CIRRELT), Canada; Département de mathématiques et génie industriel Polytechnique Montréal, CP 6079, succ. Centre-Ville, Montréal, Québec, CanadaLaboratoire en Intelligence des Données (LID), Canada; Centre Interuniversitaire de Recherche sur les Réseaux dEntreprise, la Logistique et le Transport (CIRRELT), Canada; Département de mathématiques et génie industriel Polytechnique Montréal, CP 6079, succ. Centre-Ville, Montréal, Québec, CanadaIn a context of growing demand for food and the scarcity of natural resources, the development of more sustainable agriculture is imperative. This means it is necessary to limit the environmental impact of agricultural activities on soil and water and to be mindful of the carbon footprint, while maintaining crop yields and economic benefits for producers. Crop rotation is a valuable tool in sustainable agriculture, but this technique has to be appropriately coupled with sustainable fertilization plans to optimize crops. The proposed methodology uses recurrent neural networks (RNN); more precisely, LSTMs, in a Seq2Seq architecture, to predict the most probable scenarios of crop rotations to be exploited in a field in subsequent growing seasons, according to cropping habits. The output can be used in crop models to build a decision support system for greater sustainability in agricultural production by allowing producers to choose the strategy that offers the best compromise between profitability and environmental impact.http://www.sciencedirect.com/science/article/pii/S2772375522001162Agriculture 4.0Crop rotationDeep learningSeq2SeqLSTM
spellingShingle Ambre Dupuis
Camélia Dadouchi
Bruno Agard
Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
Smart Agricultural Technology
Agriculture 4.0
Crop rotation
Deep learning
Seq2Seq
LSTM
title Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
title_full Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
title_fullStr Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
title_full_unstemmed Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
title_short Methodology for multi-temporal prediction of crop rotations using recurrent neural networks
title_sort methodology for multi temporal prediction of crop rotations using recurrent neural networks
topic Agriculture 4.0
Crop rotation
Deep learning
Seq2Seq
LSTM
url http://www.sciencedirect.com/science/article/pii/S2772375522001162
work_keys_str_mv AT ambredupuis methodologyformultitemporalpredictionofcroprotationsusingrecurrentneuralnetworks
AT cameliadadouchi methodologyformultitemporalpredictionofcroprotationsusingrecurrentneuralnetworks
AT brunoagard methodologyformultitemporalpredictionofcroprotationsusingrecurrentneuralnetworks