Weed Interference in Soybean Crop Affects Soil Microbial Activity and Biomass

ABSTRACT: Weeds and microorganisms interacting with their rhizosphere may influence nutrient absorption, which is an important factor for plant competition. The purpose of this study was to evaluate the microbiological activity, inorganic phosphorus solubilization (Pi) and acid phosphatase in the cu...

Full description

Bibliographic Details
Main Authors: C.M.T. FIALHO, A.A. SILVA, C.A.D. MELO, M.D. COSTA, M.W.R. SOUZA, L.A.C. REIS
Format: Article
Language:English
Published: Sociedade Brasileira da Ciência das Plantas Daninhas
Series:Planta Daninha
Subjects:
Online Access:http://www.scielo.br/pdf/pd/v38/0100-8358-PD-38-e020221853.pdf
Description
Summary:ABSTRACT: Weeds and microorganisms interacting with their rhizosphere may influence nutrient absorption, which is an important factor for plant competition. The purpose of this study was to evaluate the microbiological activity, inorganic phosphorus solubilization (Pi) and acid phosphatase in the cultivated soil, in a combination of soybean (Glycine max) plants and weeds. Soybeans were cultivated in monoculture and in competition with Bidens pilosa, Brachiaria decumbens (Syn. Urochloa decumbens) and Eleusine indica, under two conditions: a) plants competing without contact between the roots b) plants competing with contact between the roots. A nylon screen with a 50 µm mesh was added to prevent contact between the roots of the species in competition so that the substratum could be separated in the vase. The experiment was conducted in randomized blocks, with four replications. The soybeans in competition with weeds led to lower oxidation of organic matter per unit of microbial biomass, resulting in a lower metabolic quotient, compared with the soybean monoculture. The contact between soybean roots and B. pilosa, B. decumbens and E. indica maintained a strong influence, raising the solubilization of Pi, respectively valued at 51, 39 and 31% in relation to the cultivation of each species with a nylon screen. Microbiological activity, inorganic phosphorus solubilization and acid phosphatase were altered by plant species, combinations of weeds and soybean plants in competition; by root contact in some cases. Thus, the microbiological activity of the soil can influence competition strategies and plant development.
ISSN:0100-8358