A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming
We investigate a class of challenging general semidefinite programming problems with extra nonconvex constraints such as matrix rank constraints. This problem has extensive applications, including combinatorial graph problems, such as MAX-CUT and community detection, reformulated as quadratic object...
第一著者: | Chuangchuang Sun |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2023-10-01
|
シリーズ: | Mathematics |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2227-7390/11/21/4413 |
類似資料
-
An ADMM-based SQP method for separably smooth nonconvex optimization
著者:: Meixing Liu, 等
出版事項: (2020-03-01) -
Subsampling algorithms for semidefinite programming
著者:: Alexandre W. d'Aspremont
出版事項: (2011-01-01) -
Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
著者:: Qinghua Liu, 等
出版事項: (2019-01-01) -
Nonconvex matrix completion with Nesterov’s acceleration
著者:: Xiao-Bo Jin, 等
出版事項: (2018-12-01) -
Bounds on Linear PDEs via Semidefinite Optimization
著者:: Bertsimas, Dimitris J., 等
出版事項: (2003)