A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming
We investigate a class of challenging general semidefinite programming problems with extra nonconvex constraints such as matrix rank constraints. This problem has extensive applications, including combinatorial graph problems, such as MAX-CUT and community detection, reformulated as quadratic object...
Päätekijä: | Chuangchuang Sun |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2023-10-01
|
Sarja: | Mathematics |
Aiheet: | |
Linkit: | https://www.mdpi.com/2227-7390/11/21/4413 |
Samankaltaisia teoksia
-
An ADMM-based SQP method for separably smooth nonconvex optimization
Tekijä: Meixing Liu, et al.
Julkaistu: (2020-03-01) -
Subsampling algorithms for semidefinite programming
Tekijä: Alexandre W. d'Aspremont
Julkaistu: (2011-01-01) -
Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
Tekijä: Qinghua Liu, et al.
Julkaistu: (2019-01-01) -
Nonconvex matrix completion with Nesterov’s acceleration
Tekijä: Xiao-Bo Jin, et al.
Julkaistu: (2018-12-01) -
Bounds on Linear PDEs via Semidefinite Optimization
Tekijä: Bertsimas, Dimitris J., et al.
Julkaistu: (2003)