A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming
We investigate a class of challenging general semidefinite programming problems with extra nonconvex constraints such as matrix rank constraints. This problem has extensive applications, including combinatorial graph problems, such as MAX-CUT and community detection, reformulated as quadratic object...
Auteur principal: | Chuangchuang Sun |
---|---|
Format: | Article |
Langue: | English |
Publié: |
MDPI AG
2023-10-01
|
Collection: | Mathematics |
Sujets: | |
Accès en ligne: | https://www.mdpi.com/2227-7390/11/21/4413 |
Documents similaires
-
An ADMM-based SQP method for separably smooth nonconvex optimization
par: Meixing Liu, et autres
Publié: (2020-03-01) -
Subsampling algorithms for semidefinite programming
par: Alexandre W. d'Aspremont
Publié: (2011-01-01) -
Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
par: Qinghua Liu, et autres
Publié: (2019-01-01) -
Nonconvex matrix completion with Nesterov’s acceleration
par: Xiao-Bo Jin, et autres
Publié: (2018-12-01) -
Bounds on Linear PDEs via Semidefinite Optimization
par: Bertsimas, Dimitris J., et autres
Publié: (2003)