Overview of Deep Learning-Based Code Representation and Its Applications
The analysis and inference of program play an important role in software development, maintenance and migration. How to efficiently obtain high quality information from program code has become a hot research topic. In recent years, a large number of researchers have introduced the deep learning-base...
第一著者: | ZHANG Xiangping, LIU Jianxun |
---|---|
フォーマット: | 論文 |
言語: | zho |
出版事項: |
Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
2022-09-01
|
シリーズ: | Jisuanji kexue yu tansuo |
主題: | |
オンライン・アクセス: | http://fcst.ceaj.org/fileup/1673-9418/PDF/2110073.pdf |
類似資料
-
Code Readability Assessment Method Based on Multidimensional Features and Hybrid Neural Networks
著者:: MI Qing, GUO Li-min, CHEN Jun-cheng
出版事項: (2021-12-01) -
Learning Sentence-Level Representations with Predictive Coding
著者:: Vladimir Araujo, 等
出版事項: (2023-01-01) -
Code Aggregate Graph: Effective Representation for Graph Neural Networks to Detect Vulnerable Code
著者:: Hoang Viet Nguyen, 等
出版事項: (2022-01-01) -
Enhanced representation learning with temporal coding in sparsely spiking neural networks
著者:: Adrien Fois, 等
出版事項: (2023-11-01) -
Discrete Infomax Codes for Supervised Representation Learning
著者:: Yoonho Lee, 等
出版事項: (2022-04-01)