Research on time series prediction of hybrid intelligent systems based on deep learning
Power forecasting plays a crucial role in the operation of smart grid system, which is indispensable for making the operation plan of power system, improving economic efficiency and ensuring the quality of power supply. In order to enhance the accuracy of power load forecasting, a hybrid intelligent...
Hlavní autoři: | Shang Jin, Wang Weiqing, Shi Bingcun, Xu Xiaobo |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier
2024-09-01
|
Edice: | Intelligent Systems with Applications |
Témata: | |
On-line přístup: | http://www.sciencedirect.com/science/article/pii/S2667305324000930 |
Podobné jednotky
-
Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
Autor: Arbër Perçuku, a další
Vydáno: (2025-02-01) -
Short-Term Load Forecasting for Electrical Power Distribution Systems Using Enhanced Deep Neural Networks
Autor: Shewit Tsegaye, a další
Vydáno: (2024-01-01) -
Time Series Forecasting of Electrical Energy Consumption Using Deep Learning Algorithm
Autor: E. O. Edoka, a další
Vydáno: (2023-09-01) -
Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands
Autor: Faisal Mehmood Butt, a další
Vydáno: (2021-04-01) -
Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
Autor: Arpita Samanta Santra, a další
Vydáno: (2019-05-01)