Research on time series prediction of hybrid intelligent systems based on deep learning
Power forecasting plays a crucial role in the operation of smart grid system, which is indispensable for making the operation plan of power system, improving economic efficiency and ensuring the quality of power supply. In order to enhance the accuracy of power load forecasting, a hybrid intelligent...
Κύριοι συγγραφείς: | Shang Jin, Wang Weiqing, Shi Bingcun, Xu Xiaobo |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
Elsevier
2024-09-01
|
Σειρά: | Intelligent Systems with Applications |
Θέματα: | |
Διαθέσιμο Online: | http://www.sciencedirect.com/science/article/pii/S2667305324000930 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
ανά: Arbër Perçuku, κ.ά.
Έκδοση: (2025-02-01) -
Short-Term Load Forecasting for Electrical Power Distribution Systems Using Enhanced Deep Neural Networks
ανά: Shewit Tsegaye, κ.ά.
Έκδοση: (2024-01-01) -
Time Series Forecasting of Electrical Energy Consumption Using Deep Learning Algorithm
ανά: E. O. Edoka, κ.ά.
Έκδοση: (2023-09-01) -
Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands
ανά: Faisal Mehmood Butt, κ.ά.
Έκδοση: (2021-04-01) -
Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
ανά: Arpita Samanta Santra, κ.ά.
Έκδοση: (2019-05-01)