Research on time series prediction of hybrid intelligent systems based on deep learning
Power forecasting plays a crucial role in the operation of smart grid system, which is indispensable for making the operation plan of power system, improving economic efficiency and ensuring the quality of power supply. In order to enhance the accuracy of power load forecasting, a hybrid intelligent...
Автори: | Shang Jin, Wang Weiqing, Shi Bingcun, Xu Xiaobo |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Elsevier
2024-09-01
|
Серія: | Intelligent Systems with Applications |
Предмети: | |
Онлайн доступ: | http://www.sciencedirect.com/science/article/pii/S2667305324000930 |
Схожі ресурси
Схожі ресурси
-
Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
за авторством: Arbër Perçuku, та інші
Опубліковано: (2025-02-01) -
Short-Term Load Forecasting for Electrical Power Distribution Systems Using Enhanced Deep Neural Networks
за авторством: Shewit Tsegaye, та інші
Опубліковано: (2024-01-01) -
Time Series Forecasting of Electrical Energy Consumption Using Deep Learning Algorithm
за авторством: E. O. Edoka, та інші
Опубліковано: (2023-09-01) -
Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands
за авторством: Faisal Mehmood Butt, та інші
Опубліковано: (2021-04-01) -
Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
за авторством: Arpita Samanta Santra, та інші
Опубліковано: (2019-05-01)