Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Những tác giả chính: | , , |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
MDPI AG
2021-09-01
|
Loạt: | Axioms |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.mdpi.com/2075-1680/10/4/237 |
Tóm tắt: | We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton. |
---|---|
số ISSN: | 2075-1680 |