Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Huvudupphovsmän: | , , |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
MDPI AG
2021-09-01
|
Serie: | Axioms |
Ämnen: | |
Länkar: | https://www.mdpi.com/2075-1680/10/4/237 |
Sammanfattning: | We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton. |
---|---|
ISSN: | 2075-1680 |