Series with Commuting Terms in Topologized Semigroups

We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.

Bibliografiska uppgifter
Huvudupphovsmän: Alberto Castejón, Eusebio Corbacho, Vaja Tarieladze
Materialtyp: Artikel
Språk:English
Publicerad: MDPI AG 2021-09-01
Serie:Axioms
Ämnen:
Länkar:https://www.mdpi.com/2075-1680/10/4/237
Beskrivning
Sammanfattning:We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
ISSN:2075-1680