Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Hlavní autoři: | Alberto Castejón, Eusebio Corbacho, Vaja Tarieladze |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2021-09-01
|
Edice: | Axioms |
Témata: | |
On-line přístup: | https://www.mdpi.com/2075-1680/10/4/237 |
Podobné jednotky
-
Representations of commutative semitopological semigroups/
Autor: 357415 Dunkl, Charles F., a další
Vydáno: (1975) -
The theory of topological semigroups/
Autor: Carruth, J. Harvey (James Harvey), 1938-, a další
Vydáno: (1983) -
Compact right topological semigroups and generalizations of almost periodicity/
Autor: 181959 Berglund, J. F., a další
Vydáno: (1978) -
A topological approach for rough semigroups
Autor: Nurettin Bağırmaz
Vydáno: (2024-10-01) -
Thickness in topological transformation semigroups
Autor: Tyler Haynes
Vydáno: (1993-01-01)