Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Auteurs principaux: | Alberto Castejón, Eusebio Corbacho, Vaja Tarieladze |
---|---|
Format: | Article |
Langue: | English |
Publié: |
MDPI AG
2021-09-01
|
Collection: | Axioms |
Sujets: | |
Accès en ligne: | https://www.mdpi.com/2075-1680/10/4/237 |
Documents similaires
-
Representations of commutative semitopological semigroups/
par: 357415 Dunkl, Charles F., et autres
Publié: (1975) -
The theory of topological semigroups/
par: Carruth, J. Harvey (James Harvey), 1938-, et autres
Publié: (1983) -
Compact right topological semigroups and generalizations of almost periodicity/
par: 181959 Berglund, J. F., et autres
Publié: (1978) -
A topological approach for rough semigroups
par: Nurettin Bağırmaz
Publié: (2024-10-01) -
Thickness in topological transformation semigroups
par: Tyler Haynes
Publié: (1993-01-01)