Series with Commuting Terms in Topologized Semigroups
We show that the following general version of the Riemann–Dirichlet theorem is true: if every rearrangement of a series with pairwise commuting terms in a Hausdorff topologized semigroup converges, then its sum range is a singleton.
Главные авторы: | Alberto Castejón, Eusebio Corbacho, Vaja Tarieladze |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2021-09-01
|
Серии: | Axioms |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2075-1680/10/4/237 |
Схожие документы
-
Representations of commutative semitopological semigroups/
по: 357415 Dunkl, Charles F., и др.
Опубликовано: (1975) -
The theory of topological semigroups/
по: Carruth, J. Harvey (James Harvey), 1938-, и др.
Опубликовано: (1983) -
Compact right topological semigroups and generalizations of almost periodicity/
по: 181959 Berglund, J. F., и др.
Опубликовано: (1978) -
A topological approach for rough semigroups
по: Nurettin Bağırmaz
Опубликовано: (2024-10-01) -
Thickness in topological transformation semigroups
по: Tyler Haynes
Опубликовано: (1993-01-01)