<b>Diffusion equations and different spatial fractional derivatives

We investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region.  In all cases, we verify an anomalous spreading of the system, whi...

Full description

Bibliographic Details
Main Authors: Alexandre F. B. Duarte, Jessica de M. Gatti Pereira, Marcelo Kaminski Lenzi, Giane Gonçalves, Roberto Rossato, Ervin Kaminski Lenzi
Format: Article
Language:English
Published: Universidade Estadual de Maringá 2014-09-01
Series:Acta Scientiarum: Technology
Subjects:
Online Access:http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413
_version_ 1818749481702653952
author Alexandre F. B. Duarte
Jessica de M. Gatti Pereira
Marcelo Kaminski Lenzi
Giane Gonçalves
Roberto Rossato
Ervin Kaminski Lenzi
author_facet Alexandre F. B. Duarte
Jessica de M. Gatti Pereira
Marcelo Kaminski Lenzi
Giane Gonçalves
Roberto Rossato
Ervin Kaminski Lenzi
author_sort Alexandre F. B. Duarte
collection DOAJ
description We investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region.  In all cases, we verify an anomalous spreading of the system, which can be connected to a rich class of anomalous diffusion processes.
first_indexed 2024-12-18T04:04:28Z
format Article
id doaj.art-b51e2920330f4c5d93bb3bd175d224aa
institution Directory Open Access Journal
issn 1806-2563
1807-8664
language English
last_indexed 2024-12-18T04:04:28Z
publishDate 2014-09-01
publisher Universidade Estadual de Maringá
record_format Article
series Acta Scientiarum: Technology
spelling doaj.art-b51e2920330f4c5d93bb3bd175d224aa2022-12-21T21:21:36ZengUniversidade Estadual de MaringáActa Scientiarum: Technology1806-25631807-86642014-09-0136465766210.4025/actascitechnol.v36i4.2441311359<b>Diffusion equations and different spatial fractional derivativesAlexandre F. B. Duarte0Jessica de M. Gatti Pereira1Marcelo Kaminski Lenzi2Giane Gonçalves3Roberto Rossato4Ervin Kaminski Lenzi5Universidade Estadual de MaringáUniversidade Estadual de MaringáUniversidade Federal do ParanáUniversidade Tecnológica Federal do ParanáUniversidade Tecnológica Federal do ParanáUniversidade Estadual de MaringáWe investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region.  In all cases, we verify an anomalous spreading of the system, which can be connected to a rich class of anomalous diffusion processes.http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413diffusion equationfractional derivativeanomalous diffusion
spellingShingle Alexandre F. B. Duarte
Jessica de M. Gatti Pereira
Marcelo Kaminski Lenzi
Giane Gonçalves
Roberto Rossato
Ervin Kaminski Lenzi
<b>Diffusion equations and different spatial fractional derivatives
Acta Scientiarum: Technology
diffusion equation
fractional derivative
anomalous diffusion
title <b>Diffusion equations and different spatial fractional derivatives
title_full <b>Diffusion equations and different spatial fractional derivatives
title_fullStr <b>Diffusion equations and different spatial fractional derivatives
title_full_unstemmed <b>Diffusion equations and different spatial fractional derivatives
title_short <b>Diffusion equations and different spatial fractional derivatives
title_sort b diffusion equations and different spatial fractional derivatives
topic diffusion equation
fractional derivative
anomalous diffusion
url http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413
work_keys_str_mv AT alexandrefbduarte bdiffusionequationsanddifferentspatialfractionalderivatives
AT jessicademgattipereira bdiffusionequationsanddifferentspatialfractionalderivatives
AT marcelokaminskilenzi bdiffusionequationsanddifferentspatialfractionalderivatives
AT gianegoncalves bdiffusionequationsanddifferentspatialfractionalderivatives
AT robertorossato bdiffusionequationsanddifferentspatialfractionalderivatives
AT ervinkaminskilenzi bdiffusionequationsanddifferentspatialfractionalderivatives