<b>Diffusion equations and different spatial fractional derivatives
We investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region. In all cases, we verify an anomalous spreading of the system, whi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade Estadual de Maringá
2014-09-01
|
Series: | Acta Scientiarum: Technology |
Subjects: | |
Online Access: | http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413 |
_version_ | 1818749481702653952 |
---|---|
author | Alexandre F. B. Duarte Jessica de M. Gatti Pereira Marcelo Kaminski Lenzi Giane Gonçalves Roberto Rossato Ervin Kaminski Lenzi |
author_facet | Alexandre F. B. Duarte Jessica de M. Gatti Pereira Marcelo Kaminski Lenzi Giane Gonçalves Roberto Rossato Ervin Kaminski Lenzi |
author_sort | Alexandre F. B. Duarte |
collection | DOAJ |
description | We investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region. In all cases, we verify an anomalous spreading of the system, which can be connected to a rich class of anomalous diffusion processes. |
first_indexed | 2024-12-18T04:04:28Z |
format | Article |
id | doaj.art-b51e2920330f4c5d93bb3bd175d224aa |
institution | Directory Open Access Journal |
issn | 1806-2563 1807-8664 |
language | English |
last_indexed | 2024-12-18T04:04:28Z |
publishDate | 2014-09-01 |
publisher | Universidade Estadual de Maringá |
record_format | Article |
series | Acta Scientiarum: Technology |
spelling | doaj.art-b51e2920330f4c5d93bb3bd175d224aa2022-12-21T21:21:36ZengUniversidade Estadual de MaringáActa Scientiarum: Technology1806-25631807-86642014-09-0136465766210.4025/actascitechnol.v36i4.2441311359<b>Diffusion equations and different spatial fractional derivativesAlexandre F. B. Duarte0Jessica de M. Gatti Pereira1Marcelo Kaminski Lenzi2Giane Gonçalves3Roberto Rossato4Ervin Kaminski Lenzi5Universidade Estadual de MaringáUniversidade Estadual de MaringáUniversidade Federal do ParanáUniversidade Tecnológica Federal do ParanáUniversidade Tecnológica Federal do ParanáUniversidade Estadual de MaringáWe investigate for the diffusion equation the differences manifested by the solutions when three different types of spatial differential operators of noninteger (or fractional) order are considered for a limited and unlimited region. In all cases, we verify an anomalous spreading of the system, which can be connected to a rich class of anomalous diffusion processes.http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413diffusion equationfractional derivativeanomalous diffusion |
spellingShingle | Alexandre F. B. Duarte Jessica de M. Gatti Pereira Marcelo Kaminski Lenzi Giane Gonçalves Roberto Rossato Ervin Kaminski Lenzi <b>Diffusion equations and different spatial fractional derivatives Acta Scientiarum: Technology diffusion equation fractional derivative anomalous diffusion |
title | <b>Diffusion equations and different spatial fractional derivatives |
title_full | <b>Diffusion equations and different spatial fractional derivatives |
title_fullStr | <b>Diffusion equations and different spatial fractional derivatives |
title_full_unstemmed | <b>Diffusion equations and different spatial fractional derivatives |
title_short | <b>Diffusion equations and different spatial fractional derivatives |
title_sort | b diffusion equations and different spatial fractional derivatives |
topic | diffusion equation fractional derivative anomalous diffusion |
url | http://186.233.154.254/ojs/index.php/ActaSciTechnol/article/view/24413 |
work_keys_str_mv | AT alexandrefbduarte bdiffusionequationsanddifferentspatialfractionalderivatives AT jessicademgattipereira bdiffusionequationsanddifferentspatialfractionalderivatives AT marcelokaminskilenzi bdiffusionequationsanddifferentspatialfractionalderivatives AT gianegoncalves bdiffusionequationsanddifferentspatialfractionalderivatives AT robertorossato bdiffusionequationsanddifferentspatialfractionalderivatives AT ervinkaminskilenzi bdiffusionequationsanddifferentspatialfractionalderivatives |