A Bidimensional Empirical Mode Decomposition Method for Fusion of Multispectral and Panchromatic Remote Sensing Images

This article focuses on the image fusion of high-resolution panchromatic and multispectral images. We propose a new image fusion method based on a Hue-Saturation-Value (HSV) color space model and bidimensional empirical mode decomposition (BEMD), by integrating high-frequency component of panchrom...

Full description

Bibliographic Details
Main Authors: Weihua Dong, Xian'en Li, Xiangguo Lin, Zhilin Li
Format: Article
Language:English
Published: MDPI AG 2014-09-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/6/9/8446
Description
Summary:This article focuses on the image fusion of high-resolution panchromatic and multispectral images. We propose a new image fusion method based on a Hue-Saturation-Value (HSV) color space model and bidimensional empirical mode decomposition (BEMD), by integrating high-frequency component of panchromatic image into multispectral image and optimizing the BEMD in decreasing sifting time, simplifying extrema point locating and more efficient interpolation. This new method has been tested with a panchromatic image (SPOT, 10-m resolution) and a multispectral image (TM, 28-m resolution). Visual and quantitative assessment methods are applied to evaluate the quality of the fused images. The experimental results show that the proposed method provided superior performance over conventional fusion algorithms in improving the quality of the fused images in terms of visual effectiveness, standard deviation, correlation coefficient, bias index and degree of distortion. Both five different land cover types WorldView-II images and three different sensor combinations (TM/SPOT, WorldView-II, 0.5 m/1 m resolution and IKONOS, 1 m/4 m resolution) validated the robustness of BEMD fusion performance. Both of these results prove the capability of the proposed BEMD method as a robust image fusion method to prevent color distortion and enhance image detail.
ISSN:2072-4292