Performance of Grating Couplers Used in the Optical Switch Configuration

Surface plasmon resonance is an effect widely used for biosensing. Biosensors based on this effect operate in different configurations, including the use of diffraction gratings as couplers. Gratings are highly tunable and are easy to integrate into a fluidic system due to their planar configuration...

Full description

Bibliographic Details
Main Authors: Emilie Laffont, Arnaud Valour, Nicolas Crespo-Monteiro, Pierre Berini, Yves Jourlin
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/22/9028
Description
Summary:Surface plasmon resonance is an effect widely used for biosensing. Biosensors based on this effect operate in different configurations, including the use of diffraction gratings as couplers. Gratings are highly tunable and are easy to integrate into a fluidic system due to their planar configuration. We discuss the optimization of plasmonic grating couplers for use in a specific sensor configuration based on the optical switch. These gratings present a sinusoidal profile with a high depth/period ratio. Their interaction with a <i>p</i>-polarized light beam results in two significant diffracted orders (the 0th and the −1st), which enable differential measurements cancelling noise due to common fluctuations. The gratings are fabricated by combining laser interference lithography with nanoimprinting in a process that is aligned with the challenges of low-cost mass production. The effects of different grating parameters such as the period, depth and profile are theoretically and experimentally investigated.
ISSN:1424-8220