Deeply-Learned Spatial Alignment for Person Re-Identification
A large class of Person Re-identification (ReID) approaches identify pedestrians with the TriHard loss. Though the TriHard loss is a robust ReID method, pose variance and viewpoint in pedestrians constrain the performance. To address this problem, we introduce a spatial transformer network (STN) to...
Main Authors: | Dongyue Chen, Peng Chen, Xiaosheng Yu, Mengjiao Cao, Tong Jia |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
IEEE
2019-01-01
|
סדרה: | IEEE Access |
נושאים: | |
גישה מקוונת: | https://ieeexplore.ieee.org/document/8856191/ |
פריטים דומים
-
An Efficient Multi-Scale Focusing Attention Network for Person Re-Identification
מאת: Wei Huang, et al.
יצא לאור: (2021-02-01) -
Modified centroid triplet loss for person re-identification
מאת: Alaa Alnissany, et al.
יצא לאור: (2023-05-01) -
Cross-Modality Person Re-Identification via Local Paired Graph Attention Network
מאת: Jianglin Zhou, et al.
יצא לאור: (2023-04-01) -
Vehicle Re-Identification in Aerial Imagery Based on Normalized Virtual Softmax Loss
מאת: Wenzuo Qiao, et al.
יצא לאור: (2022-05-01) -
Person Re-Identification Between Visible and Thermal Camera Images Based on Deep Residual CNN Using Single Input
מאת: Jin Kyu Kang, et al.
יצא לאור: (2019-01-01)