The Dichromatic Number of Infinite Families of Circulant Tournaments

The dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T=C→2n+1(1,2,…,n)$T = \overrightarrow C _{2n...

Full description

Bibliographic Details
Main Authors: Javier Nahid, Llano Bernardo
Format: Article
Language:English
Published: University of Zielona Góra 2017-02-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1930
_version_ 1797757781286060032
author Javier Nahid
Llano Bernardo
author_facet Javier Nahid
Llano Bernardo
author_sort Javier Nahid
collection DOAJ
description The dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T=C→2n+1(1,2,…,n)$T = \overrightarrow C _{2n + 1} (1,2, \ldots ,n)$, where V (T) = ℤ2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs (a, a + j) for every a ∈ ℤ2n+1. Consider the circulant tournament C→2n+1〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle $ obtained from the cyclic tournament by reversing one of its jumps, that is, C→2n+1 〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle $ has the same arc set as C→2n+1(1,2,…,n)$\overrightarrow C _{2n + 1} (1,2, \ldots ,n)$ except for j = k in which case, the arcs are (a, a − k) for every a ∈ ℤ2n+1. In this paper, we prove that dc(C→2n+1 〈k〉)∈{2,3,4}$dc ( {\overrightarrow C _{2n + 1} \left\langle k \right\rangle } ) \in \{ 2,3,4\}$ for every k ∈ {1, 2, . . . , n}. Moreover, we classify which circulant tournaments C→2n+1 〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle$ are vertex-critical r-dichromatic for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}. Some previous results by Neumann-Lara are generalized.
first_indexed 2024-03-12T18:19:31Z
format Article
id doaj.art-b53cae667d77473e900fa6e83603a33a
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T18:19:31Z
publishDate 2017-02-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-b53cae667d77473e900fa6e83603a33a2023-08-02T08:59:10ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922017-02-0137122123810.7151/dmgt.1930dmgt.1930The Dichromatic Number of Infinite Families of Circulant TournamentsJavier Nahid0Llano Bernardo1Departamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, 09340, México, D.F., MexicoDepartamento de Matemáticas, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, 09340, México, D.F., MexicoThe dichromatic number dc(D) of a digraph D is defined to be the minimum number of colors such that the vertices of D can be colored in such a way that every chromatic class induces an acyclic subdigraph in D. The cyclic circulant tournament is denoted by T=C→2n+1(1,2,…,n)$T = \overrightarrow C _{2n + 1} (1,2, \ldots ,n)$, where V (T) = ℤ2n+1 and for every jump j ∈ {1, 2, . . . , n} there exist the arcs (a, a + j) for every a ∈ ℤ2n+1. Consider the circulant tournament C→2n+1〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle $ obtained from the cyclic tournament by reversing one of its jumps, that is, C→2n+1 〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle $ has the same arc set as C→2n+1(1,2,…,n)$\overrightarrow C _{2n + 1} (1,2, \ldots ,n)$ except for j = k in which case, the arcs are (a, a − k) for every a ∈ ℤ2n+1. In this paper, we prove that dc(C→2n+1 〈k〉)∈{2,3,4}$dc ( {\overrightarrow C _{2n + 1} \left\langle k \right\rangle } ) \in \{ 2,3,4\}$ for every k ∈ {1, 2, . . . , n}. Moreover, we classify which circulant tournaments C→2n+1 〈k〉$\overrightarrow C _{2n + 1} \left\langle k \right\rangle$ are vertex-critical r-dichromatic for every k ∈ {1, 2, . . . , n} and r ∈ {2, 3, 4}. Some previous results by Neumann-Lara are generalized.https://doi.org/10.7151/dmgt.1930tournamentdichromatic numbervertex-critical r-dichromatic tournament05c2005c38
spellingShingle Javier Nahid
Llano Bernardo
The Dichromatic Number of Infinite Families of Circulant Tournaments
Discussiones Mathematicae Graph Theory
tournament
dichromatic number
vertex-critical r-dichromatic tournament
05c20
05c38
title The Dichromatic Number of Infinite Families of Circulant Tournaments
title_full The Dichromatic Number of Infinite Families of Circulant Tournaments
title_fullStr The Dichromatic Number of Infinite Families of Circulant Tournaments
title_full_unstemmed The Dichromatic Number of Infinite Families of Circulant Tournaments
title_short The Dichromatic Number of Infinite Families of Circulant Tournaments
title_sort dichromatic number of infinite families of circulant tournaments
topic tournament
dichromatic number
vertex-critical r-dichromatic tournament
05c20
05c38
url https://doi.org/10.7151/dmgt.1930
work_keys_str_mv AT javiernahid thedichromaticnumberofinfinitefamiliesofcirculanttournaments
AT llanobernardo thedichromaticnumberofinfinitefamiliesofcirculanttournaments
AT javiernahid dichromaticnumberofinfinitefamiliesofcirculanttournaments
AT llanobernardo dichromaticnumberofinfinitefamiliesofcirculanttournaments