A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions

An improved representation of the carbon cycle in permafrost regions will enable more realistic projections of the future climate–carbon system. Currently JULES (the Joint UK Land Environment Simulator) – the land surface model of the UK Earth System Model (UKESM) – uses the standard four-pool RothC...

Full description

Bibliographic Details
Main Authors: E. J. Burke, S. E. Chadburn, A. Ekici
Format: Article
Language:English
Published: Copernicus Publications 2017-02-01
Series:Geoscientific Model Development
Online Access:http://www.geosci-model-dev.net/10/959/2017/gmd-10-959-2017.pdf
_version_ 1828183170734882816
author E. J. Burke
S. E. Chadburn
A. Ekici
author_facet E. J. Burke
S. E. Chadburn
A. Ekici
author_sort E. J. Burke
collection DOAJ
description An improved representation of the carbon cycle in permafrost regions will enable more realistic projections of the future climate–carbon system. Currently JULES (the Joint UK Land Environment Simulator) – the land surface model of the UK Earth System Model (UKESM) – uses the standard four-pool RothC soil carbon model. This paper describes a new version of JULES (vn4.3_permafrost) in which the soil vertical dimension is added to the soil carbon model, with a set of four pools in every soil layer. The respiration rate in each soil layer depends on the temperature and moisture conditions in that layer. Cryoturbation/bioturbation processes, which transfer soil carbon between layers, are represented by diffusive mixing. The litter inputs and the soil respiration are both parametrized to decrease with increasing depth. The model now includes a tracer so that selected soil carbon can be labelled and tracked through a simulation. Simulations show an improvement in the large-scale horizontal and vertical distribution of soil carbon over the standard version of JULES (vn4.3). Like the standard version of JULES, the vertically discretized model is still unable to simulate enough soil carbon in the tundra regions. This is in part because JULES underestimates the plant productivity over the tundra, but also because not all of the processes relevant for the accumulation of permafrost carbon, such as peat development, are included in the model. In comparison with the standard model, the vertically discretized model shows a delay in the onset of soil respiration in the spring, resulting in an increased net uptake of carbon during this time. In order to provide a more suitable representation of permafrost carbon for quantifying the permafrost carbon feedback within UKESM, the deep soil carbon in the permafrost region (below 1 m) was initialized using the observed soil carbon. There is now a slight drift in the soil carbon ( &lt;  0.018 % decade<sup>−1</sup>), but the change in simulated soil carbon over the 20th century, when there is little climate change, is comparable to the original vertically discretized model and significantly larger than the drift.
first_indexed 2024-04-12T06:28:29Z
format Article
id doaj.art-b54609ddd17d444d88966945ae9054c9
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-04-12T06:28:29Z
publishDate 2017-02-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-b54609ddd17d444d88966945ae9054c92022-12-22T03:44:05ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032017-02-0110295997510.5194/gmd-10-959-2017A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regionsE. J. Burke0S. E. Chadburn1A. Ekici2Met Office Hadley Centre, Fitzroy Road, Exeter, EX1 3PB, UKUniversity of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, EX4 4QF, UKUniversity of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, EX4 4QF, UKAn improved representation of the carbon cycle in permafrost regions will enable more realistic projections of the future climate–carbon system. Currently JULES (the Joint UK Land Environment Simulator) – the land surface model of the UK Earth System Model (UKESM) – uses the standard four-pool RothC soil carbon model. This paper describes a new version of JULES (vn4.3_permafrost) in which the soil vertical dimension is added to the soil carbon model, with a set of four pools in every soil layer. The respiration rate in each soil layer depends on the temperature and moisture conditions in that layer. Cryoturbation/bioturbation processes, which transfer soil carbon between layers, are represented by diffusive mixing. The litter inputs and the soil respiration are both parametrized to decrease with increasing depth. The model now includes a tracer so that selected soil carbon can be labelled and tracked through a simulation. Simulations show an improvement in the large-scale horizontal and vertical distribution of soil carbon over the standard version of JULES (vn4.3). Like the standard version of JULES, the vertically discretized model is still unable to simulate enough soil carbon in the tundra regions. This is in part because JULES underestimates the plant productivity over the tundra, but also because not all of the processes relevant for the accumulation of permafrost carbon, such as peat development, are included in the model. In comparison with the standard model, the vertically discretized model shows a delay in the onset of soil respiration in the spring, resulting in an increased net uptake of carbon during this time. In order to provide a more suitable representation of permafrost carbon for quantifying the permafrost carbon feedback within UKESM, the deep soil carbon in the permafrost region (below 1 m) was initialized using the observed soil carbon. There is now a slight drift in the soil carbon ( &lt;  0.018 % decade<sup>−1</sup>), but the change in simulated soil carbon over the 20th century, when there is little climate change, is comparable to the original vertically discretized model and significantly larger than the drift.http://www.geosci-model-dev.net/10/959/2017/gmd-10-959-2017.pdf
spellingShingle E. J. Burke
S. E. Chadburn
A. Ekici
A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
Geoscientific Model Development
title A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
title_full A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
title_fullStr A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
title_full_unstemmed A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
title_short A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
title_sort vertical representation of soil carbon in the jules land surface scheme vn4 3 permafrost with a focus on permafrost regions
url http://www.geosci-model-dev.net/10/959/2017/gmd-10-959-2017.pdf
work_keys_str_mv AT ejburke averticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions
AT sechadburn averticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions
AT aekici averticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions
AT ejburke verticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions
AT sechadburn verticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions
AT aekici verticalrepresentationofsoilcarboninthejuleslandsurfaceschemevn43permafrostwithafocusonpermafrostregions