Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice

We analyze a connection matrix of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>d</mi></semantics></math></inline-formula>-dimensional Ising system and solve the inverse problem,...

Full description

Bibliographic Details
Main Authors: Boris Kryzhanovsky, Leonid Litinskii
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/10/1424
_version_ 1797473462715940864
author Boris Kryzhanovsky
Leonid Litinskii
author_facet Boris Kryzhanovsky
Leonid Litinskii
author_sort Boris Kryzhanovsky
collection DOAJ
description We analyze a connection matrix of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>d</mi></semantics></math></inline-formula>-dimensional Ising system and solve the inverse problem, restoring the constants of interaction between spins, based on the known spectrum of its eigenvalues. When the boundary conditions are periodic, we can account for interactions between spins that are arbitrarily far. In the case of the free boundary conditions, we have to restrict ourselves with interactions between the given spin and the spins of the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>d</mi></semantics></math></inline-formula> coordination spheres.
first_indexed 2024-03-09T20:14:51Z
format Article
id doaj.art-b566923a74c84a1185e9b4d8f7b8056a
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T20:14:51Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-b566923a74c84a1185e9b4d8f7b8056a2023-11-24T00:03:31ZengMDPI AGEntropy1099-43002022-10-012410142410.3390/e24101424Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic LatticeBoris Kryzhanovsky0Leonid Litinskii1Center of Optical Neural Technologies, Scientific Research Institute for System Analysis, Russian Academy of Sciences, Nakhimov Ave, 36-1, 117218 Moscow, RussiaCenter of Optical Neural Technologies, Scientific Research Institute for System Analysis, Russian Academy of Sciences, Nakhimov Ave, 36-1, 117218 Moscow, RussiaWe analyze a connection matrix of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>d</mi></semantics></math></inline-formula>-dimensional Ising system and solve the inverse problem, restoring the constants of interaction between spins, based on the known spectrum of its eigenvalues. When the boundary conditions are periodic, we can account for interactions between spins that are arbitrarily far. In the case of the free boundary conditions, we have to restrict ourselves with interactions between the given spin and the spins of the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>d</mi></semantics></math></inline-formula> coordination spheres.https://www.mdpi.com/1099-4300/24/10/1424Ising connection matrixeigenvaluesKronecker productinverse problem
spellingShingle Boris Kryzhanovsky
Leonid Litinskii
Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
Entropy
Ising connection matrix
eigenvalues
Kronecker product
inverse problem
title Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
title_full Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
title_fullStr Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
title_full_unstemmed Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
title_short Generalized Solution of Inverse Problem for Ising Connection Matrix on <i>d</i>-Dimensional Hypercubic Lattice
title_sort generalized solution of inverse problem for ising connection matrix on i d i dimensional hypercubic lattice
topic Ising connection matrix
eigenvalues
Kronecker product
inverse problem
url https://www.mdpi.com/1099-4300/24/10/1424
work_keys_str_mv AT boriskryzhanovsky generalizedsolutionofinverseproblemforisingconnectionmatrixonididimensionalhypercubiclattice
AT leonidlitinskii generalizedsolutionofinverseproblemforisingconnectionmatrixonididimensionalhypercubiclattice