On the Plasticity and Deformation Mechanisms in Magnesium Crystals

This work presents an overview of the mechanical response and microstructure evolution of specifically oriented pure magnesium single crystals under plane strain compression at room temperature. Crystals of ‘hard’ orientations compressed along the <i>c</i>-axis exhibited limited room tem...

Full description

Bibliographic Details
Main Authors: Konstantin D. Molodov, Talal Al-Samman, Dmitri A. Molodov
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/13/4/640
_version_ 1797604332209700864
author Konstantin D. Molodov
Talal Al-Samman
Dmitri A. Molodov
author_facet Konstantin D. Molodov
Talal Al-Samman
Dmitri A. Molodov
author_sort Konstantin D. Molodov
collection DOAJ
description This work presents an overview of the mechanical response and microstructure evolution of specifically oriented pure magnesium single crystals under plane strain compression at room temperature. Crystals of ‘hard’ orientations compressed along the <i>c</i>-axis exhibited limited room temperature ductility, although pyramidal ⟨c + a⟩ slip was readily activated, fracturing along crystallographic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>11</mn><mover accent="true"><mn>2</mn><mo>¯</mo></mover><mn>4</mn></mrow></mfenced></mrow></semantics></math></inline-formula> planes as a result of highly localized shear. Profuse <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twinning was the primary mode of incipient deformation in the case of orientations favorably aligned for <i>c</i>-axis extension. In both cases of compression along ⟨<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mover accent="true"><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>⟩ and ⟨<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>⟩ directions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twins completely converted the starting orientations into twin orientations; the subsequent deformation behavior of the differently oriented crystals, however, was remarkably different. The formation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twins could not be prevented by the channel-die constraints when <i>c</i>-axis extension was confined. The presence of high angle grain boundaries and, in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> twin boundaries was found to be a prerequisite for the activation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> contraction twinning by providing nucleation sites for the latter. Prismatic slip was not found to operate at room temperature in the case of starting orientations most favorably aligned for prismatic slip; instead, cooperative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> contraction twinning was activated. A two-stage work hardening behavior was observed in ‘soft’ Mg crystals aligned for single or coplanar basal slip. The higher work hardening in the second stage was attributed to changes in the microstructure rather than the interaction of primary dislocations with forest dislocations.
first_indexed 2024-03-11T04:44:58Z
format Article
id doaj.art-b5755fdf72a24c1b87cc5af33dee6bb9
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-11T04:44:58Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-b5755fdf72a24c1b87cc5af33dee6bb92023-11-17T20:25:32ZengMDPI AGMetals2075-47012023-03-0113464010.3390/met13040640On the Plasticity and Deformation Mechanisms in Magnesium CrystalsKonstantin D. Molodov0Talal Al-Samman1Dmitri A. Molodov2Department of Materials and Process Development, Salzgitter Mannesmann Forschung GmbH, Eisenhüttenstr. 99, 38239 Salzgitter, GermanyInstitute for Physical Metallurgy and Materials Physics, RWTH Aachen University, 52056 Aachen, GermanyInstitute for Physical Metallurgy and Materials Physics, RWTH Aachen University, 52056 Aachen, GermanyThis work presents an overview of the mechanical response and microstructure evolution of specifically oriented pure magnesium single crystals under plane strain compression at room temperature. Crystals of ‘hard’ orientations compressed along the <i>c</i>-axis exhibited limited room temperature ductility, although pyramidal ⟨c + a⟩ slip was readily activated, fracturing along crystallographic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>11</mn><mover accent="true"><mn>2</mn><mo>¯</mo></mover><mn>4</mn></mrow></mfenced></mrow></semantics></math></inline-formula> planes as a result of highly localized shear. Profuse <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twinning was the primary mode of incipient deformation in the case of orientations favorably aligned for <i>c</i>-axis extension. In both cases of compression along ⟨<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mover accent="true"><mn>2</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>⟩ and ⟨<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow></semantics></math></inline-formula>⟩ directions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twins completely converted the starting orientations into twin orientations; the subsequent deformation behavior of the differently oriented crystals, however, was remarkably different. The formation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension twins could not be prevented by the channel-die constraints when <i>c</i>-axis extension was confined. The presence of high angle grain boundaries and, in particular, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> twin boundaries was found to be a prerequisite for the activation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> contraction twinning by providing nucleation sites for the latter. Prismatic slip was not found to operate at room temperature in the case of starting orientations most favorably aligned for prismatic slip; instead, cooperative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow></mfenced></mrow></semantics></math></inline-formula> extension and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="}" open="{"><mrow><mn>10</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> contraction twinning was activated. A two-stage work hardening behavior was observed in ‘soft’ Mg crystals aligned for single or coplanar basal slip. The higher work hardening in the second stage was attributed to changes in the microstructure rather than the interaction of primary dislocations with forest dislocations.https://www.mdpi.com/2075-4701/13/4/640magnesiumsingle crystaldeformation twinningplasticity
spellingShingle Konstantin D. Molodov
Talal Al-Samman
Dmitri A. Molodov
On the Plasticity and Deformation Mechanisms in Magnesium Crystals
Metals
magnesium
single crystal
deformation twinning
plasticity
title On the Plasticity and Deformation Mechanisms in Magnesium Crystals
title_full On the Plasticity and Deformation Mechanisms in Magnesium Crystals
title_fullStr On the Plasticity and Deformation Mechanisms in Magnesium Crystals
title_full_unstemmed On the Plasticity and Deformation Mechanisms in Magnesium Crystals
title_short On the Plasticity and Deformation Mechanisms in Magnesium Crystals
title_sort on the plasticity and deformation mechanisms in magnesium crystals
topic magnesium
single crystal
deformation twinning
plasticity
url https://www.mdpi.com/2075-4701/13/4/640
work_keys_str_mv AT konstantindmolodov ontheplasticityanddeformationmechanismsinmagnesiumcrystals
AT talalalsamman ontheplasticityanddeformationmechanismsinmagnesiumcrystals
AT dmitriamolodov ontheplasticityanddeformationmechanismsinmagnesiumcrystals