Combination of Dry Milling and Separation Processes with Anaerobic Digestion of Olive Mill Solid Waste: Methane Production and Energy Efficiency

This experimental work aims at investigating the effects of milling; sieving; and electrostatic separation on the biochemical methane potential of two olive pomaces from traditional olive oil extraction (M) and from a three-phase system (T). Sieving proved to be efficient for increasing the soluble...

Full description

Bibliographic Details
Main Authors: Doha Elalami, Hélène Carrère, Karima Abdelouahdi, Abdallah Oukarroum, Driss Dhiba, Mohamed Arji, Abdellatif Barakat
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/23/12/3295
Description
Summary:This experimental work aims at investigating the effects of milling; sieving; and electrostatic separation on the biochemical methane potential of two olive pomaces from traditional olive oil extraction (M) and from a three-phase system (T). Sieving proved to be efficient for increasing the soluble chemical oxygen demand in the smallest fractions of the sieve of both M (62%) and T (78%) samples. The positive fraction following electrostatic separation also enhanced chemical oxygen demand (COD) solubilisation by 94%, in comparison to sample T milled at 4 mm. Sieve fractions with a size greater than 0.9 mm contained 33% and 47% less lipids for the M and T biomasses; respectively. Dry fractionation modified sample properties as well as lipid and fiber distribution. Concomitantly; milling increased the accessibility and facilitated the release of organic matter. The energy balance was positive after knife milling and sieving; while ball milling and ultrafine milling proved to be inefficient.
ISSN:1420-3049