Summary: | The factors involved in shuttling cholesterol among cellular membranes have not been defined. Using amphotericin B selection, we previously isolated Chinese hamster ovary cell mutants expressing defects in intracellular cholesterol transport. Complementation analysis among seven mutants identified one cell line, mutant 3-6, with a unique defect. The present analysis revealed three key features of mutant 3-6. First, the movement of cholesterol both from the endoplasmic reticulum and through lysosomes to the plasma membrane was normal. However, when intact 3-6 cells were treated with sphingomyelinase, movement of plasma membrane cholesterol to acyl CoA:cholesterol acyltransferase in the endoplasmic reticulum was defective. Cellular cholesterol was mobilized to this enzyme upon activation by 25-hydroxycholesterol. Second, mutant 3-6 did not utilize endogenously synthesized sterol or low density lipoprotein-derived cholesterol for growth as effectively as parental Chinese hamster ovary cells. Finally, despite normal movement of cholesterol to the plasma membrane, mutant 3-6 was amphotericin B resistant. The plasma membrane cholesterol content was normal as assessed by cholesterol oxidase treatment and Semliki Forest virus fusion, which suggests that the 3-6 mutation alters the organization of cholesterol in the plasma membrane. Our characterization of this mutant cell line should facilitate the identification of gene(s) required for this transport pathway.
|