Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region
The quantitative characterization of the thermal conditions in the Tibetan Plateau has long been a focal point of global research. Downward shortwave radiation, as a crucial component, plays an important role in numerous land surface processes while also serving as a significant indicator of the pla...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/16/5/791 |
_version_ | 1827319467191828480 |
---|---|
author | Tianci Li Xiaozhou Xin Hailong Zhang Shanshan Yu Li Li Zhiqiang Ye Qinhuo Liu He Cai |
author_facet | Tianci Li Xiaozhou Xin Hailong Zhang Shanshan Yu Li Li Zhiqiang Ye Qinhuo Liu He Cai |
author_sort | Tianci Li |
collection | DOAJ |
description | The quantitative characterization of the thermal conditions in the Tibetan Plateau has long been a focal point of global research. Downward shortwave radiation, as a crucial component, plays an important role in numerous land surface processes while also serving as a significant indicator of the plateau’s thermal state. In order to gain a more comprehensive understanding of the Earth’s radiation budget in the Tibetan Plateau region, this study undertook an evaluation of six radiation products (ISCCP-FH, CERES-SYN, GLASS DSR, Himawari-8, MCD18A1, and ERA5). Two sets of ground measurements (downward shortwave radiation values from 10 CMA sites and 6 sites provided by the National Tibetan Plateau Data Center) in 2015 and 2016 were used as validation data to verify the accuracy of the remote sensing products. The results show that in the Tibetan Plateau region, CERESC products show the highest accuracy among the six data products with a bias (relative bias) of −7.57 W/m<sup>2</sup> (3.46%), RMSE (relative RMSE) of 32.77 W/m<sup>2</sup> (14.99%), and coefficient of determination of 0.80. Among all products, only the ERA5 products overestimated the value of downward shortwave radiation in the Tibetan Plateau region with a bias (relative bias) of 15.62 W/m<sup>2</sup> (7.14%). By employing a spatial resolution upscaling approach, we assessed the influence of varying spatial resolutions on the validation accuracy, with the results indicating minimal impact. Through an analysis of the impact of cloud factors and aerosol factors on the validation accuracy, it is deduced that ERA5, Himawari-8, and MCD18A1 products are significantly influenced by cloud factors, whereas the CERES-SYN product is notably affected by aerosol factors. |
first_indexed | 2024-04-25T00:21:25Z |
format | Article |
id | doaj.art-b58009065165461680746e09f12b443c |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-04-25T00:21:25Z |
publishDate | 2024-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-b58009065165461680746e09f12b443c2024-03-12T16:54:02ZengMDPI AGRemote Sensing2072-42922024-02-0116579110.3390/rs16050791Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau RegionTianci Li0Xiaozhou Xin1Hailong Zhang2Shanshan Yu3Li Li4Zhiqiang Ye5Qinhuo Liu6He Cai7Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, ChinaThe quantitative characterization of the thermal conditions in the Tibetan Plateau has long been a focal point of global research. Downward shortwave radiation, as a crucial component, plays an important role in numerous land surface processes while also serving as a significant indicator of the plateau’s thermal state. In order to gain a more comprehensive understanding of the Earth’s radiation budget in the Tibetan Plateau region, this study undertook an evaluation of six radiation products (ISCCP-FH, CERES-SYN, GLASS DSR, Himawari-8, MCD18A1, and ERA5). Two sets of ground measurements (downward shortwave radiation values from 10 CMA sites and 6 sites provided by the National Tibetan Plateau Data Center) in 2015 and 2016 were used as validation data to verify the accuracy of the remote sensing products. The results show that in the Tibetan Plateau region, CERESC products show the highest accuracy among the six data products with a bias (relative bias) of −7.57 W/m<sup>2</sup> (3.46%), RMSE (relative RMSE) of 32.77 W/m<sup>2</sup> (14.99%), and coefficient of determination of 0.80. Among all products, only the ERA5 products overestimated the value of downward shortwave radiation in the Tibetan Plateau region with a bias (relative bias) of 15.62 W/m<sup>2</sup> (7.14%). By employing a spatial resolution upscaling approach, we assessed the influence of varying spatial resolutions on the validation accuracy, with the results indicating minimal impact. Through an analysis of the impact of cloud factors and aerosol factors on the validation accuracy, it is deduced that ERA5, Himawari-8, and MCD18A1 products are significantly influenced by cloud factors, whereas the CERES-SYN product is notably affected by aerosol factors.https://www.mdpi.com/2072-4292/16/5/791downward shortwave radiationTibetan PlateauCERES-SYNERA5cloud optical thicknessaerosol optical depth |
spellingShingle | Tianci Li Xiaozhou Xin Hailong Zhang Shanshan Yu Li Li Zhiqiang Ye Qinhuo Liu He Cai Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region Remote Sensing downward shortwave radiation Tibetan Plateau CERES-SYN ERA5 cloud optical thickness aerosol optical depth |
title | Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region |
title_full | Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region |
title_fullStr | Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region |
title_full_unstemmed | Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region |
title_short | Evaluation of Six Data Products of Surface Downward Shortwave Radiation in Tibetan Plateau Region |
title_sort | evaluation of six data products of surface downward shortwave radiation in tibetan plateau region |
topic | downward shortwave radiation Tibetan Plateau CERES-SYN ERA5 cloud optical thickness aerosol optical depth |
url | https://www.mdpi.com/2072-4292/16/5/791 |
work_keys_str_mv | AT tiancili evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT xiaozhouxin evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT hailongzhang evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT shanshanyu evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT lili evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT zhiqiangye evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT qinhuoliu evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion AT hecai evaluationofsixdataproductsofsurfacedownwardshortwaveradiationintibetanplateauregion |