Discretization methods for nonconvex differential inclusions
We prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2009-03-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
_version_ | 1797830734605451264 |
---|---|
author | M. Yarou |
author_facet | M. Yarou |
author_sort | M. Yarou |
collection | DOAJ |
description | We prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function. |
first_indexed | 2024-04-09T13:40:49Z |
format | Article |
id | doaj.art-b58442da967e4f07bb66804d9d807407 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:40:49Z |
publishDate | 2009-03-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-b58442da967e4f07bb66804d9d8074072023-05-09T07:52:59ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752009-03-0120091211010.14232/ejqtde.2009.1.12365Discretization methods for nonconvex differential inclusionsM. Yarou0University of Jijel, Jijel, AlgeriaWe prove the existence of solutions for the differential inclusion $\dot x(t)\in F(t,x(t)) + f(t,x(t))$ for a multifunction $F$ upper semicontinuous with compact values contained in the generalized Clarke gradient of a regular locally Lipschitz function and $f$ a Carath\'{e}odory function.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
spellingShingle | M. Yarou Discretization methods for nonconvex differential inclusions Electronic Journal of Qualitative Theory of Differential Equations |
title | Discretization methods for nonconvex differential inclusions |
title_full | Discretization methods for nonconvex differential inclusions |
title_fullStr | Discretization methods for nonconvex differential inclusions |
title_full_unstemmed | Discretization methods for nonconvex differential inclusions |
title_short | Discretization methods for nonconvex differential inclusions |
title_sort | discretization methods for nonconvex differential inclusions |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=365 |
work_keys_str_mv | AT myarou discretizationmethodsfornonconvexdifferentialinclusions |