Boosted Binary Quantum Classifier via Graphical Kernel

In terms of the logical structure of data in machine learning (ML), we apply a novel graphical encoding method in quantum computing to build the mapping between feature space of sample data and two-level nested graph state that presents a kind of multi-partite entanglement state. By implementing swa...

Full description

Bibliographic Details
Main Authors: Yuan Li, Duan Huang
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/6/870
Description
Summary:In terms of the logical structure of data in machine learning (ML), we apply a novel graphical encoding method in quantum computing to build the mapping between feature space of sample data and two-level nested graph state that presents a kind of multi-partite entanglement state. By implementing swap-test circuit on the graphical training states, a binary quantum classifier to large-scale test states is effectively realized in this paper. In addition, for the error classification caused by noise, we further explored the subsequent processing scheme by adjusting the weights so that a strong classifier is formed and its accuracy is greatly boosted. In this paper, the proposed boosting algorithm demonstrates superiority in certain aspects as demonstrated via experimental investigation. This work further enriches the theoretical foundation of quantum graph theory and quantum machine learning, which may be exploited to assist the classification of massive-data networks by entangling subgraphs.
ISSN:1099-4300