Opposing trends of cloud coverage over land and ocean under global warming

<p>Clouds play a key role in Earth's energy budget and water cycle. Their response to global warming contributes the largest uncertainty to climate prediction. Here, by performing an empirical orthogonal function analysis on 42 years of reanalysis data of global cloud coverage, we extract...

Full description

Bibliographic Details
Main Authors: H. Liu, I. Koren, O. Altaratz, M. D. Chekroun
Format: Article
Language:English
Published: Copernicus Publications 2023-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/23/6559/2023/acp-23-6559-2023.pdf
Description
Summary:<p>Clouds play a key role in Earth's energy budget and water cycle. Their response to global warming contributes the largest uncertainty to climate prediction. Here, by performing an empirical orthogonal function analysis on 42 years of reanalysis data of global cloud coverage, we extract an unambiguous trend and El-Niño–Southern-Oscillation-associated modes. The trend mode translates spatially to decreasing trends in cloud coverage over most continents and increasing trends over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trends in cloud coverage over land. Our results suggest potential stress on the terrestrial water cycle and changes in the energy partition between land and ocean, all associated with global warming.</p>
ISSN:1680-7316
1680-7324